Skip to main content
Log in

High-Temperature Oxidation of Steels in Direct-Fired CO2 Power Cycle Environments

  • Corrosion and Protection of Materials at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Future direct-fired supercritical CO2 power cycles require steels resistant to oxidation/corrosion in high-temperature CO2 environments containing various impurities. Herein we studied the oxidation behavior of 14 candidate steels in a simulated direct-fired CO2 power cycle environment consisting of 95% CO2, 4% H2O, 1% O2 with/without 0.1% SO2 at 1 atm and 550 °C, 600 °C, 650 °C for up to 2500 h. Steels with ≥ 11.5 wt% Cr exhibited at least partial coverage by Cr-rich oxide scales leading to a significant decrease in the oxidation rates in both gases. While SO2 had little effect on low-Cr steels that formed Fe-rich oxides, it generally worsened performance of high-Cr (> 11.5 wt%) steels by hindering the establishment of a protective Cr-rich oxide. This effect was most pronounced at the lowest temperature of 550 °C, which was attributed to strong preferential adsorption of sulfur-containing species within the oxide at relatively low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Brun, P. Friedman and R. Dennis, Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles (Woodhead Publishing, Sawston, 2017).

    Google Scholar 

  2. R. Allam, S. Martin, B. Forrest, J. Fetvedt, X. Lu, D. Freed, G.W. Brown, T. Sasaki, M. Itoh and J. Manning, Energy Procedia 114, 5948. (2017).

    Article  Google Scholar 

  3. R.P. Oleksak, J.H. Tylczak, C.S. Carney, G.R. Holcomb and Ö.N. Doğan, JOM 70, 1527. (2018).

    Article  Google Scholar 

  4. B.A. Pint, R. Pillai, M.J. Lance and J.R. Keiser, Oxid. Met., 94, 505 (2020).

    Article  Google Scholar 

  5. H.J. Lee, H. Kim, S.H. Kim and C. Jang, Corros. Sci. 99, 227. (2015).

    Article  Google Scholar 

  6. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson and T.R. Allen, Corros. Sci. 69, 281. (2013).

    Article  Google Scholar 

  7. R.I. Olivares, D.J. Young, T.D. Nguyen and P. Marvig, Oxid. Met. 90, 1. (2018).

    Article  Google Scholar 

  8. B. Adam, L. Teeter, J. Mahaffey, M. Anderson, L. Árnadóttir and J.D. Tucker, Oxid. Met. 90, 453. (2018).

    Article  Google Scholar 

  9. Y. Gui, Z. Liang, H. Shao and Q. Zhao, Corros. Sci. 175, 108870. (2020).

    Article  Google Scholar 

  10. M.H.S. Bidabadi, S. Chandra-ambhorn, A. Rehman, Y. Zheng, C. Zhang, H. Chen and Z.-G. Yang, Corros. Sci. 177, 108950. (2020).

    Article  Google Scholar 

  11. F. Rouillard and T. Furukawa, Corros. Sci. 105, 120. (2016).

    Article  Google Scholar 

  12. J.P. Shingledecker, S.C. Kung and I.G. Wright, Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO2, Report No. DE-FE0024120, Electric Power Research Institute (2017).

  13. R.P. Oleksak and F. Rouillard, Materials performance in CO2 and supercritical CO2, in Comprehensive Nuclear Materials, 2nd edn. ed. by R.J.M. Konings and R.E. Stoller (Elsevier, Oxford, 2020), pp. 422–451. https://doi.org/10.1016/B978-0-12-803581-8.11622-4.

    Chapter  Google Scholar 

  14. R.P. Oleksak, J.H. Tylczak, G.R. Holcomb and Ö.N. Doğan, Corros. Sci. 157, 20. (2019).

    Article  Google Scholar 

  15. R.P. Oleksak, J.H. Tylczak, G.R. Holcomb and Ö.N. Doğan, Corros. Sci. 164, 108316. (2020).

    Article  Google Scholar 

  16. R.P. Oleksak, J.H. Tylczak, G.R. Holcomb and O.N. Dogan, JOM 72, 1822. (2020).

    Article  Google Scholar 

  17. S. Kung, J. Shingledecker, I. Wright, T. Lolla and A. Sabau. Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, Pennsylvania. (2018).

  18. T. Lolla, J. Shingledecker, S. Kung, M. Gagliano, I. Wright and A. Sabau. Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium. Pittsburgh, PA (2018).

  19. B.A. Pint, R.G. Brese and J.R. Keiser. Proceedings of the 2018 NACE CORROSION Conference. Phoenix, AZ (2018).

  20. B.A. Pint, J. Lehmusto, M.J. Lance and J.R. Keiser, Mater. Corros. 70, 1400. (2019).

    Article  Google Scholar 

  21. J. Mahaffey, D. Adam, A. Brittan, M. Anderson and K. Sridharan, Oxid. Met. 86, 567. (2016).

    Article  Google Scholar 

  22. J. Mahaffey, A. Schroeder, D. Adam, A. Brittan, M. Anderson, A. Couet and K. Sridharan, Metall. and Mater. Trans. A. 49, 3703. (2018).

    Article  Google Scholar 

  23. J. Lehmusto, J. Kurley, M. Lance, J. Keiser and B.A. Pint, Oxid. Met. 94, 95. (2020).

    Article  Google Scholar 

  24. B.A. Pint, R. Pillai and J.R. Keiser. Proceedings of the 2020 NACE CORROSION Conference. Virtual (2020).

  25. K. Li, Y. Zeng and J.-L. Luo, Corros. Sci. 184, 109350. (2021).

    Article  Google Scholar 

  26. S.R. Akanda, R.P. Oleksak, R. Repukaiti, K.A. Rozman and Ö.N. Doğan, Metall. Mater. Trans. A. 52, 82. (2021).

    Article  Google Scholar 

  27. C. Yu, J. Zhang and D.J. Young, Oxid. Met. 90, 97. (2018).

    Article  Google Scholar 

  28. P. Huczkowski, D.J. Young, T. Olszewski, A. Chyrkin and W.J. Quadakkers, Oxid. Met. 89, 651. (2018).

    Article  Google Scholar 

  29. S.R. Akanda, R.P. Oleksak, R. Repukaiti, K.A. Rozman and Ö.N. Doğan, Corros. Sci. 192, 109795. (2021).

    Article  Google Scholar 

  30. D.J. Young, High temperature oxidation and corrosion of metals, 2nd edn. (Elsevier, New York, 2016).

    Google Scholar 

  31. P. Singh and N. Birks, Oxid. Met. 19, 37. (1983).

    Article  Google Scholar 

  32. S.-H. Choi and J. Stringer, Mater. Sci. Eng. 87, 237. (1987).

    Article  Google Scholar 

  33. H. Xu, M. Hocking and P. Sidky, Oxid. Met. 41, 81. (1994).

    Article  Google Scholar 

  34. R. Lobb and H. Evans, Corros. Sci. 25, 503. (1985).

    Article  Google Scholar 

  35. C. Yu, J. Zhang and D.J. Young, Corros. Sci. 112, 214. (2016).

    Article  Google Scholar 

  36. C. Yu, T.D. Nguyen, J. Zhang and D.J. Young, J. Electrochem. Soc. 163, C106. (2016).

    Article  Google Scholar 

  37. D. Young and S. Watson, Oxid. Met. 44, 239. (1995).

    Article  Google Scholar 

  38. Z.-S. Liu, W.-K. Li and M.-J. Hung, J. Air Waste Manag. Assoc. 64, 1038. (2014).

    Article  Google Scholar 

  39. B. Li and C. Ma, Energy Procedia 153, 471. (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in support of the U.S. Department of Energy’s Fossil Energy Crosscutting Technology Research Program. We thank Jeffrey Hawk (NETL), Paul Jablonski (NETL) and Martin Detrois (NETL) for providing the NETL developed steels (JMP3, JMP4, CPJ7). We further thank Christopher McKaig (NETL) and Matthew Fortner (NETL) for preparing the sample cross-sections and Keith Collins (NETL) for performing the electron microprobe analysis.

Funding

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through an NETL Support Contractor. Neither the United States Government nor any agency thereof, nor any of their employees, nor the contractor, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oleksak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksak, R.P., Tylczak, J.H. & Doğan, Ö.N. High-Temperature Oxidation of Steels in Direct-Fired CO2 Power Cycle Environments. JOM 73, 3965–3973 (2021). https://doi.org/10.1007/s11837-021-04960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04960-z

Navigation