Skip to main content
Log in

Evolving the “Banana Chart”: Temperature and Strain Rate Effects on Tensile Properties of New-Generation Advanced High-Strength Steels

  • Advanced High-Strength Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Advanced high-strength steels (AHSSs) are often illustrated in the steel strength–ductility diagram, which is also known as the “banana chart” due to the distribution trend of the tensile properties of the steel family. Both academia and industry frequently refer to such a diagram not only to categorize the evolving AHSS generations but also to direct future development objectives. Nevertheless, with various new AHSSs developed in recent years, the “banana chart” is considered too simplified to represent the sophisticated tensile properties of these AHSSs, especially when some practical conditions are taken into account. Therefore, this work focuses on investigating how the temperature and strain rate affect the tensile properties of selected AHSSs and correspondingly shift their distributions in the “banana chart.” Explanations and discussions on the possible mechanisms behind these effects are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.P. Keeler and M.S. Kimchi, Advanced High-Strength Steels Application Guidelines (WorldAutoSteel, 2017). https://ahssinsights.org/. Accessed April 2018.

  2. N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties, 1st edn. (Springer International, Switzerland, 2015), pp 3–14.

  3. J. Shaw, B. Engl, C. Espina, E.C. Oren, and Y. Kawamoto, SAE Trans. 111, 21. (2002).

    Google Scholar 

  4. D. Matlock and J.G. Speer, The 3rd International Conference on Structural Steels (Seoul, Korea, 2006), pp 774–781.

  5. Third Generation Advanced High Strength Steel (AHSS) (American Iron and Steel Institute, Washington, DC, 2006).

  6. D. Matlock and J. Speer, Microstructure and Texture in Steels and Other Materials, ed. A. Haldar, D. Bhattacharjee, and S. Suwas (Springer, London, UK, 2009), pp 185–205.

  7. E. Schedin, M. Jansson, H. Groth, P. Santacreu, and E. Ratte, International Deep Drawing Research Group 2008 International Conference (2008) , pp 16–18.

  8. Cybertruck (TESLA, 2019). https://www.tesla.com/cybertruck. Accessed June 2021.

  9. E. De Moor, P.J. Gibbs, J.G. Speer, D. Matlock, and J. Schroth, AIST Trans. 7(11), 132. (2010).

    Google Scholar 

  10. J. Speer, D. Matlock, B. De Cooman, and J. Schroth, Acta Mater. 51(9), 2611. (2003).

    Article  Google Scholar 

  11. J. Speer, E. De Moor, K. Findley, D. Matlock, B. De Cooman, and D. Edmonds, Metall. Mater. Trans. A 42(12), 3591. (2011).

    Article  Google Scholar 

  12. J. Speer, E. De Moor, and A. Clarke, Mater. Sci. Technol. 31(1), 3. (2015).

    Article  Google Scholar 

  13. M. Davenport, Stamp. J. 22. (2017). https://www.stampingjournal-digital.com/stampingjournal/20170910?pg=22#pg22.

  14. B.M. Hance and S.A.E. Int, J. Mater. Manuf. 11(4), 505. (2018).

    Google Scholar 

  15. M.P. Pereira and B.F. Rolfe, J. Mater. Process. Technol. 214(8), 1749. (2014).

    Article  Google Scholar 

  16. J. Hu and K.S. Raghavan, IOP Conf. Ser. Mater. Sci. Eng. 418, 012001. (2018).

    Article  Google Scholar 

  17. K. Sato, Q. Yu, J. Hiramoto, T. Urabe, and A. Yoshitake, Int. J. Impact Eng. 75, 11. (2015).

    Article  Google Scholar 

  18. P. Larour, A. Bäumer, K. Dahmen, and W. Bleck, Steel Res. Int. 84(5), 426. (2013).

    Article  Google Scholar 

  19. G.B. Olson and M. Cohen, J. Less-Common Met. 28(1), 107. (1972).

    Article  Google Scholar 

  20. G.B. Olson and M. Cohen, Metall. Mater. Trans. A 7A(12), 1905. (1976).

    Article  Google Scholar 

  21. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, and E. Patoor, Mater. Sci. Eng. A, 378, 1 SPEC. ISS., 304–307 (2004).

  22. X. Wang, B. Huang, Y. Rong, and L. Wang, J. Mater. Sci. Technol. (Shenyang China) 22(5), 625. (2006).

    Google Scholar 

  23. W.A. Poling, Ph.D. Thesis (Colorado School of Mines, Golden, 2016).

  24. F. Abu-Farha and R. Curtis, Materialwiss. Werkstofftech. 40(11), 836. (2009).

    Article  Google Scholar 

  25. J. Hu, N. Zhang, and F. Abu-Farha, Annual Conference on Experimental and Applied Mechanics, vol. 3 (Costa Mesa, CA, 2016), pp 271–279.

  26. P. Wood, C. Schley, M. Buckley, and J. Smith, SAE Trans. 302 (2007). https://www.sae.org/publications/technical-papers/content/2007-01-0987/

  27. D. Zhu, S. Rajan, B. Mobasher, A. Peled, and M. Mignolet, Exp. Mech. 51(8), 1347. (2011).

    Article  Google Scholar 

  28. B.L. Boyce and T.B. Crenshaw, Report No. SAND2005-5678 (Sandia National Laboratories, 2005).

  29. A. Araujo, J. Hu, and E. Pavlina, TMS 2020 Annual Meeting & Exhibition, Oral Presentation (San Diego, CA, 2020).

  30. J. Hu and A. Araujo, MS&T19 Technical Meeting and Exhibition, Oral Presentation (Portland, OR, 2019).

  31. Q. Furnémont, M. Kempf, P. Jacques, M. Göken, and F. Delannay, Mater. Sci. Eng. A 328(1–2), 26. (2002).

    Article  Google Scholar 

  32. J. Coryell, V. Savic, L. Hector, and S. Mishra, SAE 2013 World Congress and Exhibition, vol. 2 (Detroit, MI, 2013).

  33. G.W. Greenwood and R.H. Johnson, Proc. R. Soc. Lond. A Math. Phys. Sci. 293(1394), 403. (1965).

    Google Scholar 

  34. C.L. Magee, Ph.D. Thesis (Carnegie Institute of Technology, Pittsburgh, 1966).

  35. I. Tamura, Met. Sci. 16(5), 245. (1982).

    Article  Google Scholar 

  36. L. Rémy and A. Pineau, Mater. Sci. Eng. 36(1), 47. (1978).

    Article  Google Scholar 

  37. R.C. Picu, Acta Mater. 52(12), 3447. (2004).

    Article  Google Scholar 

  38. J.M. Robinson and M.P. Shaw, Int. Mater. Rev. 39(3), 113. (1994).

    Article  Google Scholar 

  39. A. Portevin and F. Le Châtelier, C. R. Hebd. Seances Acad. Sci. 176, 507. (1923).

    Google Scholar 

  40. P. Rodriguez, Discussion Meeting on the Mechanical Behaviour of Materials vol. 6. (India, 1984), pp 653–663.

  41. J. Min, L.G. Hector Jr., L. Zhang, J. Lin, J.E. Carsley, and L. Sun, Mater. Sci. Eng. A 673, 423. (2016).

    Article  Google Scholar 

  42. K. Zhang, M. Zhu, B. Lan, P. Liu, W. Li, and Y. Rong, Curr. Comput.-Aided Drug Des. 9(2), 94. (2019).

    Google Scholar 

  43. A.H. Cottrell, Philos. Mag. 44, 829. (1953).

    Article  Google Scholar 

  44. P.G. McCormick, Acta Metall. 20(3), 351. (1972).

    Article  Google Scholar 

  45. X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu, and M. Wang, Mater. Des. 45, 518. (2013).

    Article  Google Scholar 

  46. G. Frommeyer, U. Brux, and P. Neumann, ISIJ Int. 43(3), 438. (2003).

    Article  Google Scholar 

  47. L. Chen, H.-S. Kim, S.-K. Kim, and B.C. De Cooman, ISIJ Int. 47(12), 1804. (2007).

    Article  Google Scholar 

  48. S.-J. Lee, J. Kim, S.N. Kane, and B.C.D. Cooman, Acta Mater. 59(17), 6809. (2011).

    Article  Google Scholar 

  49. S. Curtze and V.T. Kuokkala, Acta Mater. 58(15), 5129. (2010).

    Article  Google Scholar 

  50. M.A. Meyers, Dynamic Behavior of Materials, 1st edn. (Wiley, New York, 1994), pp 296–322.

    Book  Google Scholar 

  51. R. Alturk, L.G. Hector, C.M. Enloe, F. Abu-Farha, and T.W. Brown, JOM 70(6), 894. (2018).

    Article  Google Scholar 

  52. C. Liu, L. Wang, and Y. Liu, Mater. Sci. Forum. 749, 401–406. (2013).

    Article  Google Scholar 

  53. J.-H. Kim, D. Kim, H.N. Han, F. Barlat, and M.-G. Lee, Mater. Sci. Eng. A 559, 222. (2013).

    Article  Google Scholar 

  54. P. Xia, F. Vercruysse, R. Petrov, I. Sabirov, M. Castillo-Rodríguez, and P. Verleysen, Mater. Sci. Eng. A 745, 53. (2019).

    Article  Google Scholar 

  55. I. Choi, D. Son, S.-J. Kim, D.K. Matlock, and J.G. Speer, SAE Trans. 115, 898. (2006).

    Google Scholar 

  56. L.H. De Almeida, I. Le May, and P.R.O. Emygdio, Mater. Charact. 41(4), 137. (1998).

    Article  Google Scholar 

  57. N. Vazquez-Fernandez, G. Soares, J. Smith, J. Seidt, M. Isakov, A. Gilat, V. Kuokkala, and M. Hokka, J. Dyn. Behav. Mater. 5(3), 221. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Support from Cleveland-Cliffs Steel Corporation management in providing resources to conduct this study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Thomas, G. Evolving the “Banana Chart”: Temperature and Strain Rate Effects on Tensile Properties of New-Generation Advanced High-Strength Steels. JOM 73, 3204–3213 (2021). https://doi.org/10.1007/s11837-021-04900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04900-x

Navigation