Skip to main content
Log in

Microstructure Evolution and Strengthening of a New High-Nitrogen Heat-Resistant Martensitic Steel Regulated by Heat Treatment

  • Advanced High-Strength Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Generally, the high-temperature performance of martensitic heat-resistant steels is limited by the content of δ-ferrite and the degradation of precipitates. Herein, a 9Cr high-nitrogen heat-resistant martensitic steel (HNHMS9) with 0.3 wt.% N was designed and prepared due to the high stability of nitride precipitates. Furthermore, its microstructure evolution was investigated, correlated to heat treatments. HNHMS9 normalized at 1200 °C and tempered at 760 °C exhibited more δ-ferrite, while HNHMS9 normalized at 1050 °C and tempered at 760 °C contained less δ-ferrite and massive strip-like coarse nitrides. Interestingly, the former HNHMS9 exhibited higher ductility than, but similar strength to, the latter at elevated temperature, although δ-ferrite is typically regarded as a detrimental phase for the strength and impact toughness of heat-resistant steels. Thus, an efficient strategy proposed for heat treatment of HNHMS9 is that it is preferable to eliminate strip-like coarse nitrides by insulation at elevated temperature despite the increased δ-ferrite content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.R. Bandi, and G. Krapf, Anal. Chem. 49, 649. (1977).

    Article  Google Scholar 

  2. F. Masuyama, ISIJ Int. 41, 612. (2001).

    Article  Google Scholar 

  3. J.F. Zhao, J.D. Gong, A. Saboo, D.C. Dunand, and G.B. Olson, Acta Mater. 149, 19. (2018).

    Article  Google Scholar 

  4. L. Zhu, X.B. Liu, P. Fan, Y. Dan, and L.T. Wang, Mater. High Temp. 36, 548. (2019).

    Article  Google Scholar 

  5. M.H. Lee, R. Kim, and J.H. Park, Sci. Rep. 9, 63. (2019).

    Article  Google Scholar 

  6. D.J. Abson, and J.S. Rothwell, Int. Mater. Rev. 58, 437. (2013).

    Article  Google Scholar 

  7. B. Wilshire, and P.J. Scharning, Int. Mater. Rev. 53, 91. (2008).

    Article  Google Scholar 

  8. B. Kuhn, M. Talik, J. Zurek, T. Beck, and H. Hattendorf, Mater. Sci. Eng. A 594, 372. (2014).

    Article  Google Scholar 

  9. Y.Q. Zhou, D.N. Zou, Y. Pang, T.Y. Wei, W. Zhang, Y.B. Zhang, L.B. Tong, X. Lv, and W.W. Chen, JOM 71, 3744. (2019).

    Article  Google Scholar 

  10. Naveena, and S.I. Komazaki, Mater. Sci. Eng. A, 676, 100 (2016).

  11. Y.X. Chen, F.F. Zhang, Q.Z. Yan, X.X. Zhang, and Z.Y. Hong, J. Rare Earths 37, 547. (2019).

    Article  Google Scholar 

  12. Y. Li, H. Wei, L. Zan, J. Zhang, H. Zheng, and Y. Yu, Ironmak. Steelmak. 47, 51. (2019).

    Article  Google Scholar 

  13. F. Abe, Eng. 1, 211. (2015).

    Article  Google Scholar 

  14. Q. Gao, Z. Liu, H. Li, H. Zhang, C. Jiang, A. Hao, F. Qu, and X. Lin, J. Mater. Sci. Technol. 68, 91. (2021).

    Article  Google Scholar 

  15. Z. Liu, Q. Gao, H. Zhang, S. Luo, X. Zhang, W. Li, Y. Jiang, and H. Li, Mater Sci. Eng., A 755, 106. (2019).

    Article  Google Scholar 

  16. J.R. Li, C.L. Zhang, B. Jiang, L.Y. Zhou, and Y.Z. Liu, J Alloys Compd. 248, 685. (2016).

    Google Scholar 

  17. L. Tan, T.S. Byun, Y. Katoh, and L.L. Snead, Acta Mater. 11, 71. (2014).

    Google Scholar 

  18. A.P. Pantyukhin, A.F. Shevakin, and N.N. Kozlova, Metall. 63, 1186. (2020).

    Google Scholar 

  19. S. Matsubara, T. Yamaguchi, and F. Masuyama, ISIJ Int. 58, 2102. (2018).

    Article  Google Scholar 

  20. S. Yamasaki, M. Mitsuhara, and H. Nakashima, ISIJ Int. 58, 1146. (2018).

    Article  Google Scholar 

  21. A. Puype, L. Malerba, N. De, Wispelaere, R. Petrov, and J. Sietsma, J. Nucl. Mater., 502, 282 (2018).

  22. K. Habib, M. Koyama, E. Sakurada, N. Yoshimura, T. Yokoi, K. Ushioda, K. Tsuzaki, and H. Noguchi, ISIJ Int. 59, 186. (2019).

    Article  Google Scholar 

  23. Y. Du, X. Li, X. Zhang, Y.W. Chung, D. Isheim, and S. Vaynman, Metall. Mater. Trans. A 51, 638. (2020).

    Article  Google Scholar 

  24. L. Schafer, J. Nucl. Mater. 258, 1336. (1998).

    Article  Google Scholar 

  25. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakare, R.S. Vidyathy, and H.K. Narang, Arch. Civil Mech. Eng. 18, 713. (2018).

    Article  Google Scholar 

  26. A. Kazakov, A. Kur, E. Kazakova, and D. Kiselev, Mater. Perform. Charact. 5, 497. (2016).

    Google Scholar 

  27. T. Ungar, and A. Borbely, Appl. Phys. Lett. 69, 3173. (1996).

    Article  Google Scholar 

  28. K. Maruyama, K. Sawada, and J. Koike, ISIJ Int. 41, 641. (2001).

    Article  Google Scholar 

  29. Y.W. Chai, K. Kato, C. Yabu, S. Ishikawa, and Y. Kimura, Acta Mater. 198, 230. (2020).

    Article  Google Scholar 

  30. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, and Y.Y. Li, Mater. Sci. Eng. A 527, 3210. (2010).

    Article  Google Scholar 

  31. F. Abe, New martensitic steels, ed. A.D. Gianfrancesco (Cambridge, Woodhead, 2017), p. 323.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51771137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulin Chen or Zhizhong Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Liang, L., Chen, Y. et al. Microstructure Evolution and Strengthening of a New High-Nitrogen Heat-Resistant Martensitic Steel Regulated by Heat Treatment. JOM 73, 3149–3157 (2021). https://doi.org/10.1007/s11837-021-04887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04887-5

Navigation