Skip to main content
Log in

On the Interactions of Molybdenum and Graphite, a Promising Material System for Microreactors

  • Materials for Small Nuclear Reactors and Micro Reactors, including Space Reactors
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Critical components for many microreactor designs include the core, heat pipe cladding, fuel, and moderator. This article reviews the interactions between graphite and Mo in order to assess the practicability of using Mo as a cladding heat pipe material in a graphite monolith core microreactor. The current literature data on the carburization of Mo are examined and confirmed with new experimental data. The available data for the diffusion of carbon through Mo are summarized, and calculations are performed to showcase the feasibility of such a system, assuming a nominal alkali metal heat pipe design. Finally, material options for protective coatings that could be applied to Mo in order to mitigate unwanted interactions with carbon are reviewed and key data on the thermal expansion coefficient match with Mo as well as the available carbon diffusion rate data for these materials are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. 12.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.T. Kelly, Carbon N. Y. 20, 3. (1981).

    Article  Google Scholar 

  2. L. B. Lundberg, Report No. LA-8685-MS (1981).

  3. J.W. Dini, Mater. Manuf. Process. 4, 331. (1989).

    Article  Google Scholar 

  4. D. E. Glass, R. N. Shenoy, Z. Wang, and M. C. Halbig, Report No. NASA/TM-2001-211264 (2001).

  5. D. E. Glass, C. J. Camarda, M. A. Merrigan, and J. Tom Sena, J. Spacecr. Rockets, 36, 79, (1999).

  6. B. V. Cockeram, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 33, 3685 (2002).

  7. M. Semchyshen, and R.Q. Barr, J. Less-Common Met. 11, 1. (1966).

    Article  Google Scholar 

  8. J.A. Belk, J. Less-Common Met. 1, 50. (1959).

    Article  Google Scholar 

  9. R.D. Rovang, M.E. Hunt, R.B. Dirling, R.A. Holzl, and A.I.P. Conf, Proc. 217, 702. (1991).

    Google Scholar 

  10. L. B. Lundberg and R. C. Feber, AIAA 19th Thermophysics Conference, 1 (1984).

  11. R. S. Reid, J. J. Martin, and G. L. Schmidt, (2005).

  12. L. Brewer, and R.H. Lamoreaux, Molybdenum: Physico-chemical properties of its compounds and alloys (International Atomic Energy Agency (IAEA), Vienna, 1980).

    Google Scholar 

  13. C.J. Rosa, Metall. Trans. A 14, 199. (1983).

    Article  Google Scholar 

  14. Y. Isobe, P. Son, and M. Miyake, J. Less-Common Met. 147, 261. (1989).

    Article  Google Scholar 

  15. T. Inoue, Y. Hiraoka, M. Nagae, and J. Takada, J. Alloys Compd. 414, 82. (2006).

    Article  Google Scholar 

  16. Y. Isobe, Y. Yazawa, P. Son, and M. Miyake, J. Less-Common Met. 152, 239. (1989).

    Article  Google Scholar 

  17. J.I. Imai, O. Taguchi, G.P. Tiwari, and Y. Iijima, Mater. Trans. 55, 1786. (2014).

    Article  Google Scholar 

  18. B. Lesage, and A. Huntz, Mem. Sci. Rev. Metall. 73, 19. (1976).

    Google Scholar 

  19. E. Fromm, and U. Roy, Phys. Status Solidi 9, 83. (1965).

    Article  Google Scholar 

  20. A. Zakharov, I. Novikov, V. Parshikov, and Y. A. Belykh, (1969).

  21. E. Gebhardt, E. Fromm, and U. Roy, Z. Met. 57, 732. (1966).

    Google Scholar 

  22. P. Rudman, Trans. Metall. Soc. AIME 239, 1949. (1967).

    Google Scholar 

  23. J. Crank, The Mathematics of Diffusion, Edition 2 (Clarendon, Oxford, 1975).

    Google Scholar 

  24. M. Frederick, Report No. MDO-723-0018 (2005).

  25. L.B. Freund, and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  26. E. S. Barlett, H. R. Ogden, and R. I. Jaffee, Report No. 109 (1959).

  27. R. P. Walters and B. S. Covino, Metall. Trans. A, Phys. Metall. Mater. Sci., 19 A, 2163 (1988).

  28. E. M. Passmore, J. E. Boyd, L. P. Neal, C. A. Anderson, B. S. Lement, Report No. WADD-TR-60-343 (1960).

  29. S. M. Sabol, B. Randall, J. Edington, C. Larkin, and B. Close, Report No. B-Mt-(SPME)-25 (2006).

  30. J. R. Hartenstine, Report No. 6146949 (1991).

  31. F. Arcella, Report No. N-74-34046 (1974).

  32. A. Paz y Puente, J. Dickson, D. D. K. Jr, and Y. H. Sohn, Int. J. Refract. Met. Hard Mater., 43, 317 (2014).

  33. J. Roger, F. Audubert, and Y. Le, J. Alloys Compd. 496, 244. (2010).

    Article  Google Scholar 

  34. T. Shikama, H. Araki, M. Fujitsuka, M. Fukutomi, H. Shinno, and M. Okada, Thin Solid Films 106, 185. (1983).

    Article  Google Scholar 

  35. M. Fukutomi, M. Fujitsuka, T. Shikama, and M. Okada, J. Vac. Sci. Technol. A 3, 2650. (1985).

    Article  Google Scholar 

  36. S. Morozumi, M. Kikuchi, S. Sugai, and M. Hyashi, J. Japan Inst. Met. 44, 1404. (1980).

    Article  Google Scholar 

  37. Y. Gomay, H. Koizumi, and K. Shibuki, J. Nucl. Sci. Technol. 19, 214. (1982).

    Article  Google Scholar 

  38. G.L. Doll, B.A. Mensah, H. Mohseni, and T.W. Scharf, J. Therm. Spray Technol. 19, 510. (2010).

    Article  Google Scholar 

  39. A.J. Caputo, Thin Solid Films 40, 49. (1977).

    Article  Google Scholar 

  40. E. L. Kochka, Report No. WANL-TNR-217 (1966).

  41. V. G. Samoilenko and L. N. Pereselentseva, Powder Metall. Mater. Parts, Coatings, 9, 725 (1975).

  42. B.V. Cockeram, and J.L. Hollenbeck, Surf. Coatings Technol. 157, 274. (2002).

    Article  Google Scholar 

  43. D. Yung, M. Antonov, L. Jaworska, and I. Hussainova, Int. J. Refract. Met. Hard Mater. 61, 201. (2016).

    Article  Google Scholar 

  44. A.E. Martinelli, and R.A.L. Drew, Mater. Sci. Eng. A 91, 239. (1995).

    Article  Google Scholar 

  45. A. E. Martinelli, Diffusion bonding of silicon carbide and silican nitride to molymbdenum, Doctoral dissertation, National Library of Canada, Canada, 1995.

  46. A.E. Martinelli, R.A.L. Drew, and R. Berriche, J. Mater. Sci. Lett. 15, 307. (1996).

    Article  Google Scholar 

  47. B. H. Rabin, Report No. EGG-MS-9633 (1991).

  48. K. Albertsen, and H.-J. Schaller, Ber. Bunsenges. Phys. Chem. 98, 1224. (1994).

    Article  Google Scholar 

  49. S. Sarian, J. Appl. Phys. 39, 3305. (1968).

    Article  Google Scholar 

  50. R. Resnick, and L. Seigle, Trans. Metall. Soc. AIME 236, 1732. (1966).

    Google Scholar 

  51. S. Barzilai, A. Raveh, and N. Frage, Thin Solid Films 496, 450. (2006).

    Article  Google Scholar 

  52. J.D. Hong, M.H. Hon, and R.F. Davis, Ceram. Int. 5, 155. (1979).

    Article  Google Scholar 

  53. Y. S. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermophysical properties of matter-The TPRC data series Vol 12. Thermal expansion-metallic elements and alloys (1975)

  54. Y. S. Touloukian, R. Kirby, E. Taylor, and L. T, Thermophysical properties of matter-The TPRC data series. Vol 13. Thermal expansion - metallic elements and alloys (1975)

  55. M. Warnes, and G. Simkovich, J. Less-Common Met. 106, 241. (1985).

    Article  Google Scholar 

  56. A. Telama, K. Torkkell, T. Maentyla, and P. Kettunen, Vapour deposited TiN and TiC diffusion barriers, High Temp. Alloy. Gas Turbines Other Appl., 1986.

  57. J.P. Manaud, A. Poulon, S. Gomez, and Y. Le Petitcorps, Surf. Coat. Technol. 202, 222. (2007).

    Article  Google Scholar 

  58. W.G. Sloof, B.J. Kooi, R. Delhez, T.H. De Keijser, and E.J. Mittemeijer, J. Mater. Res. 11, 1440. (1996).

    Article  Google Scholar 

  59. J. Roger, F. Audubert, and Y. Le Peticorps, J. Mater. Sci. 45, 3073. (2010).

    Article  Google Scholar 

  60. A. Poulon-Quintin, C. Faure, L. Teulé-gay, and J.-P. Manaud, Thin Solid Films 519, 1600. (2010).

    Article  Google Scholar 

  61. D.D. Keiser, E. Perez, T. Wiencek, A. Leenaers, and S. Van Den Berghe, J. Nucl. Mater. 458, 406. (2015).

    Article  Google Scholar 

  62. J.H. Perepezko, J.M. Bero, R. Sakidja, I.G. Talmy, and J. Zaykoski, Surf. Coat. Technol. 206, 3816. (2012).

    Article  Google Scholar 

  63. Ö. Baran, E.E. Sukuroglu, İ Efeoglu, and Y. Totik, J. Adhes. Sci. Technol. 4243, 1. (2016).

    Google Scholar 

  64. C. Huang, K. Tay, and L. Wu, Solid. State. Electron. 49, 219. (2005).

    Article  Google Scholar 

  65. T. Kamohara, M. Akiyama, and N. Kuwano, J. Cryst. Growth 310, 345. (2008).

    Article  Google Scholar 

  66. S. Mandal, et al., Appl. Mater. INterfaces 11, 40826. (2019).

    Article  Google Scholar 

  67. R.A. Alfintseva, Poroshkovaya Matallurgiya 1, 65. (1969).

    Google Scholar 

  68. V.P. Godbole, K. Jagannadham, and J. Narayan, Appl. Phys. Lett. 67, 1322. (1995).

    Article  Google Scholar 

  69. W. Chen, Y. Miyamoto, T. Matsumoto, and T. Tojo, Carbon N. Y. 48, 3399. (2010).

    Article  Google Scholar 

  70. C. Qiu, and R. Metselaar, J. Am. Ceram. Soc. 20, 2013. (2013).

    Google Scholar 

  71. T. Shimoo, Y. Kobayashi, and K. Okamura, J. Ceram. Soc. Japan 101, 1012. (1993).

    Article  Google Scholar 

  72. J. Schuster, J. Mater. Sci. 23, 2792. (1988).

    Article  Google Scholar 

  73. M.J. Bennett, and M.R. Houlton, J. Mater. Sci. 14, 184. (1979).

    Article  Google Scholar 

  74. Y.F. Khromov, V.P. Yanchur, and V.S. Eremeev, Fiz. Met. Mettalloved 33, 642. (1972).

    Google Scholar 

  75. W. Chen, Y. Miyamoto, and T. Matsumoto, Carbon N. Y. 48, 3399. (2010).

    Article  Google Scholar 

  76. V. S. Bogdanov, N. V S, Y. D. Kondrashev, A. B. Goncharuk, and A. N. Pityulin, Poroshkovaya Matallurgiya, 233, 79 (1982).

  77. H.O. Pierson, E. Randich, and D.M. Mattox, J. Less-Common Met. 67, 381. (1979).

    Article  Google Scholar 

  78. S. Morozumi, M. Kikuchi, and S. Kanazawa, J. Nucl. Mater., 103 & 104, 279 (1981).

  79. P.C. Tortorici, and M.A. Dayananda, Metall. Mater. Trans. A 30, 545. (1999).

    Article  Google Scholar 

  80. S.P. Chakraborty, S. Banerjee, I.G. Sharma, and A.K. Suri, J. Nucl. Mater. 403, 152. (2010).

    Article  Google Scholar 

  81. J. Muller, M. Schierling, E. Zimmermann, and D. Neuschu, Surf. Coatings Technol. 121, 16. (1999).

    Article  Google Scholar 

  82. D. Doane, Report No. WADC-TR-54-492 (1957).

  83. P. Mogilevsky, A. Werner, and H.J. Dudek, Mater. Sci. Eng. A 242, 235. (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency—Energy (ARPA-E), US Department of Energy. The support of the US Department of Energy, Office of Nuclear Energy Nuclear Technology Research and Development program is gratefully acknowledged. This work was performed at Los Alamos National Laboratory, which is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kardoulaki.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardoulaki, E., Nizolek, T.J., Luther, E.P. et al. On the Interactions of Molybdenum and Graphite, a Promising Material System for Microreactors. JOM 73, 3499–3512 (2021). https://doi.org/10.1007/s11837-021-04876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04876-8

Navigation