Skip to main content
Log in

Cluster Expansion of Alloy Theory: A Review of Historical Development and Modern Innovations

  • Informatics-Enabled Design of Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The parameterization of a physical or empirical model from a set of highly accurate but expensive calculations or measurements to generate less precise but cheaper predictions is common in many disciplines. In computational materials science and informatics-enabled design of materials, the cluster expansion (CE) method provides a direct approximation of the free energy of a lattice, or any other thermodynamic variable, in terms of a discrete cluster function, making it one of the most widely used approaches for phase diagram calculations, including order–disorder phase transitions. In this article, we review the theoretical developments that culminated in the formulation of the CE method, numerous statistical techniques currently used to fit and optimize the parameters of the CE model, the convergence of the CE method with modern machine learning and data science techniques, and recent developments that push the field beyond the conventional CE, including for structural alloy design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Kikuchi, Phys. Rev. 81, 988 (1951a)

    Article  MathSciNet  Google Scholar 

  2. J.M. Sanchez and D. de Fontaine, Phys. Rev. B 17, 2926 (1978). https://doi.org/10.1103/PhysRevB.17.2926

    Article  MathSciNet  Google Scholar 

  3. J.M. Sanchez, F. Ducastelle and D. Gratias, Physica A Stat. Mech. Appl. 128, 334 (1984)

    Article  Google Scholar 

  4. R. Kikuchi, Prog. Theor. Phys. Suppl. 115, 1 (1994). https://doi.org/10.1143/PTPS.115.1

    Article  Google Scholar 

  5. T. Mohri, J.M. Sanchez, and D. De Fontaine, Acta Metall. 33, 1463 (1985)

    Article  Google Scholar 

  6. D.B. Laks, S.-H. Wei, and A. Zunger, Phys. Rev. Lett. 69, 3766 (1992a). https://doi.org/10.1103/PhysRevLett.69.3766

    Article  Google Scholar 

  7. G.H. Wannier, Rev. Mod. Phys. 17, 50 (1945). https://doi.org/10.1103/RevModPhys.17.50

    Article  Google Scholar 

  8. T. Morita, J. Phys. Soc. Jpn. 12, 1060 (1957). https://doi.org/10.1143/JPSJ.12.1060

    Article  Google Scholar 

  9. J.W.D. Connolly and A.R. Williams, Phys. Rev. B 27, 5169 (1983). https://doi.org/10.1103/PhysRevB.27.5169

    Article  Google Scholar 

  10. Z.W. Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L.G. Ferreira, Phys. Rev. B 44, 512 (1991). https://doi.org/10.1103/PhysRevB.44.512

    Article  Google Scholar 

  11. J.M. Sanchez, J.P. Stark, and V.L. Moruzzi, Phys. Rev. B 44, 5411 (1991). https://doi.org/10.1103/PhysRevB.44.5411

    Article  Google Scholar 

  12. G.D. Garbulsky and G. Ceder, Phys. Rev. B 51, 67 (1995). https://doi.org/10.1103/PhysRevB.51.67

    Article  Google Scholar 

  13. V. Ozoliņš., C. Wolverton, and A. Zunger. Phys. Rev. B 57, 6427 (1998). https://doi.org/10.1103/PhysRevB.57.6427.

  14. M.H.F. Sluiter, Y. Watanabe, D.D. Fontaine, and Y. Kawazoe, Phys. Rev. B 53, 6137 (1996). https://doi.org/10.1103/PhysRevB.53.6137

    Article  Google Scholar 

  15. A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, Phys. Rev. B 58, 2975 (1998). https://doi.org/10.1103/PhysRevB.58.2975

    Article  Google Scholar 

  16. N.A. Zarkevich, T.L. Tan, and D.D. Johnson, Phys. Rev. B 75, 104203 (2007). https://doi.org/10.1103/PhysRevB.75.104203

    Article  Google Scholar 

  17. N.A. Zarkevich and D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004). https://doi.org/10.1103/PhysRevLett.92.255702

    Article  Google Scholar 

  18. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  19. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  20. A. van de Walle and G. Ceder, J. Phase Equilibria 23, 348 (2002). https://doi.org/10.1361/105497102770331596

    Article  Google Scholar 

  21. T. Mueller and G. Ceder, Phys. Rev. B 80, 024103 (2009). https://doi.org/10.1103/PhysRevB.80.024103

    Article  Google Scholar 

  22. E. Cockayne and A. van de Walle, Phys. Rev. B 81, 012104 (2010). https://doi.org/10.1103/PhysRevB.81.012104

    Article  Google Scholar 

  23. D.L. Donoho, IEEE Trans. Inf. Theory 52, 1289 (2006)

    Article  Google Scholar 

  24. L. J. Nelson, V. Ozoliņš, C. S. Reese, F. Zhou, and G. L. W. Hart, Phys. Rev. B 88, 155105 (2013). https://doi.org/10.1103/PhysRevB.88.155105.

  25. A. R. Natarajan and A. Van der Ven, npj Comput. Mater. 4, 1 (2018). https://doi.org/10.1038/s41524-018-0110-y.

  26. A. van de Walle, JOM 65, 1523 (2013). https://doi.org/10.1007/s11837-013-0764-3

  27. A. van de Walle, M.D. Asta, and G. Ceder, Calphad 26, 539 (2002)

    Article  Google Scholar 

  28. A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, and C. Hargus et al., J. Phys. Condens. Matter 29, 273002 (2017)

    Google Scholar 

  29. F. Bloch, Z. Phys. 61, 206 (1930). https://doi.org/10.1007/BF01339661

  30. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 263 (1941a). https://doi.org/10.1103/PhysRev.60.263.

  31. H.A. Kramers and G.H. Wannier, Phys. Rev. 60, 252 (1941b). https://doi.org/10.1103/PhysRev.60.252

    Article  MathSciNet  Google Scholar 

  32. W. L. Bragg and E. J. Williams, Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 145, 699 (1934), https://doi.org/10.1098/rspa.1934.0132.

  33. H. A. Bethe and W. L. Bragg, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 150, 552 (1935). https://doi.org/10.1098/rspa.1935.0122

  34. C.N. Yang, Variation Method J. Chem. Phys. 13, 195 (1945). https://doi.org/10.1063/1.1698926

    Article  Google Scholar 

  35. C.N. Yang and Y.Y. Li, Acta Phys. Sin. 11, 59 (1947)

    Google Scholar 

  36. Y.-Y. Li and Y.-Y. Lr, J. Chem. Phys. 17, 1071 (1949)

    Google Scholar 

  37. T.L. Hill, J. Chem. Phys. 18, 441 (1950). https://doi.org/10.1063/1.1747615

    Article  Google Scholar 

  38. M. Kurata, R. Kikuchi and T. Watari, J. Chem. Phys. 21, 434 (1953). https://doi.org/10.1063/1.1698926

    Article  MathSciNet  Google Scholar 

  39. R. Kikuchi, J. Chem. Phys. 19, 1230 (1951b). https://doi.org/10.1063/1.1748002

    Article  MathSciNet  Google Scholar 

  40. R. Kikuchi and S.G. Brush, J. Chem. Phys. 47, 195 (1967). https://doi.org/10.1063/1.1711845

    Article  Google Scholar 

  41. R. Kikuchi, J. Chem. Phys. 47, 1664 (1967). https://doi.org/10.1063/1.1712147

    Article  Google Scholar 

  42. J. A. Barker and E. A. Guggenheim, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 216, 45 (1953). https://doi.org/10.1098/rspa.1953.0005

  43. T. Morita ,J. Math. Phys. 13, 115 (1972). https://doi.org/10.1063/1.1665840

    Article  Google Scholar 

  44. D. de Fontaine, in Theory and Applications of the Cluster Variation and Path Probability Methods, edited by J. L. Moran-Lopez and J. M. Sanchez (Springer US, Boston, MA, 1996), pp. 125–144.

  45. J.M. Sanchez, Phys. Rev. B 48, 14013 (1993). https://doi.org/10.1103/PhysRevB.48.14013

    Article  Google Scholar 

  46. J.M. Sanchez, Phys. Rev. B 81, 224202 (2010). https://doi.org/10.1103/PhysRevB.81.224202

    Article  Google Scholar 

  47. J.M. Sanchez, J. Phase Equilibria Diffusion 38, 238 (2017). https://doi.org/10.1007/s11669-017-0521-3

  48. J.M. Sanchez, Phys. Rev. B 99, 134206 (2019). https://doi.org/10.1103/PhysRevB.99.134206

    Article  Google Scholar 

  49. R. Fowler and E. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  50. R. Kikuchi, J. Sanchez, D. De Fontaine, and H. Yamauchi, Acta Metall. 28, 651 (1980)

    Article  Google Scholar 

  51. J.M. Sanchez and D. de Fontaine, Phys. Rev. B 21, 216 (1980). https://doi.org/10.1103/PhysRevB.21.216

    Article  Google Scholar 

  52. J.M. Sanchez and D. de Fontaine, Phys. Rev. B 25, 1759 (1982). https://doi.org/10.1103/PhysRevB.25.1759

    Article  Google Scholar 

  53. C. Sigli and J. Sanchez, Acta Metall. 34, 1021 (1986)

    Article  Google Scholar 

  54. B.P. Burton, Phys. Rev. B 59, 6087 (1999). https://doi.org/10.1103/PhysRevB.59.6087

    Article  Google Scholar 

  55. A. Finel, in Statics and Dynamics of Alloy Phase Transformations , edited by P. E. A. Turchi and A. Gonis (Springer, Boston, MA, 1994), pp. 495–540. https://doi.org/10.1007/978-1-4615-2476-2_33

  56. M. Asta, R. McCormack, and D. de Fontaine, Phys. Rev. B 48, 748 (1993). https://doi.org/10.1103/PhysRevB.48.748

    Article  Google Scholar 

  57. J.M. Sanchez, J.L. Moran-Lopez, C. Leroux, and M.C. Cadeville, J. Phys. Condens. Matter 1, 491 (1989)

    Article  Google Scholar 

  58. R. Drautz, H. Reichert, M. Fähnle, H. Dosch, and J. M. Sanchez, Phys. Rev. Lett. 87, 236102 (2001), https://doi.org/10.1103/PhysRevLett.87.236102.

  59. T. Mueller, Phys. Rev. B 86, 144201 (2012). https://doi.org/10.1103/PhysRevB.86.144201

    Article  Google Scholar 

  60. L.-L. Wang, T.L. Tan, and D.D. Johnson, Nano Lett. 14, 7077 (2014). https://doi.org/10.1021/nl503519m

    Article  Google Scholar 

  61. L. Cao and T. Mueller, Nano Lett. 16, 7748 (2016). https://doi.org/10.1021/acs.nanolett.6b03867

    Article  Google Scholar 

  62. Z.W. Lu, D.B. Laks, S.-H. Wei, and A. Zunger, Phys. Rev. B 50, 6642 (1994). https://doi.org/10.1103/PhysRevB.50.6642

    Article  Google Scholar 

  63. M. Stone, J. R. Stat. Soc. Ser. B (Methodological) 36, 111 (1974). https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

    Article  Google Scholar 

  64. M. Stone, J. R. Stat. Soc. Ser. B (Methodological)39, 44 (1977)

    Google Scholar 

  65. T. Bayes, Phil. Trans. R. Soc.a 53, 370 (1763), https://doi.org/10.1098/rstl.1763.0053.

  66. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y.M. Wang et al., Science 348, 1230 (2015)

    Article  Google Scholar 

  67. C. Li, D. Raciti, T. Pu, L. Cao, C. He, C. Wang, and T. Mueller, J. Phys. Chem. C 122, 18040 (2018). https://doi.org/10.1021/acs.jpcc.8b03868

    Article  Google Scholar 

  68. D.D. Fontaine, in Solid State Physics, vol. 47, ed. by H. Ehrenreich, D. Turnbull (Academic, Cambridge, 1994), pp. 33–176

  69. M.S. Lucas, A. Papandrew, B. Fultz, and M.Y. Hu, Phys. Rev. B 75, 054307 (2007). https://doi.org/10.1103/PhysRevB.75.054307

    Article  Google Scholar 

  70. M.S. Lucas, M. Kresch, R. Stevens, and B. Fultz, Phys. Rev. B 77, 184303 (2008). https://doi.org/10.1103/PhysRevB.77.184303

    Article  Google Scholar 

  71. M. S. Lucas, J. A. Mu noz, L. Mauger, L. C. W., A. O. Sheets, Z. Turgut, J. Horwath, D. L. Abernathy, M. B. Stone, O. Delaire, et al., J. Appl. Phys. 108, 023519 (2010). https://doi.org/10.1063/1.34565003

  72. M.S. Lucas, L. Mauger, J.A. Muñoz, I. Halevy, J. Horwath, S.L. Semiatin, S.O. Leontsev, M.B. Stone, D.L. Abernathy, Y. Xiao et al., J. Appl. Phys. 113, 17A308 (2013). https://doi.org/10.1063/1.4794354

    Article  Google Scholar 

  73. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990). https://doi.org/10.1103/PhysRevLett.65.353

    Article  Google Scholar 

  74. S.-H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990). https://doi.org/10.1103/PhysRevB.42.9622

    Article  Google Scholar 

  75. C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, and Z.-K. Liu, Phys. Rev. B 69, 214202 (2004). https://doi.org/10.1103/PhysRevB.69.214202

    Article  Google Scholar 

  76. D. Shin, R. Arróyave, Z.-K. Liu, and A. Van de Walle, Phys. Rev. B 74, 024204 (2006). https://doi.org/10.1103/PhysRevB.74.024204

    Article  Google Scholar 

  77. J. von Pezold, A. Dick, M. Friák, and J. Neugebauer, Phys. Rev. B 81, 094203 (2010). https://doi.org/10.1103/PhysRevB.81.094203

    Article  Google Scholar 

  78. A. van de Walle, P. Tiwary, M. de Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Calphad 42, 13 (2013)

    Article  Google Scholar 

  79. K.C. Hass, L.C. Davis, and A. Zunger, Phys. Rev. B 42, 3757 (1990). https://doi.org/10.1103/PhysRevB.42.3757

    Article  Google Scholar 

  80. C. Jiang, C.R. Stanek, K.E. Sickafus,and B.P. Uberuaga, Phys. Rev. B 79, 104203 (2009). https://doi.org/10.1103/PhysRevB.79.104203

    Article  Google Scholar 

  81. Z. Jiang, Y. Nahas, B. Xu, S. Prosandeev, D. Wang, and L. Bellaiche, J. Phys. Condens. Matter 28, 475901 (2016)

    Article  Google Scholar 

  82. M.C. Gao, C. Niu, C. Jiang, and D.L. Irving, in High-Entropy Alloys: Fundamentals and Applications. ed. by M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang (Springer, Cham, 2016), pp. 333–368. https://doi.org/10.1007/978-3-319-27013-5_10

  83. B. Alling, T. Marten, and I.A. Abrikosov, Phys. Rev. B 82, 184430 (2010). https://doi.org/10.1103/PhysRevB.82.184430

    Article  Google Scholar 

  84. F. Körmann, P.-W. Ma, S.L. Dudarev, and J. Neugebauer, J. Phys. Condens. Matter 28, 076002 (2016)

    Article  Google Scholar 

  85. J.A. Munoz, M.S. Lucas, O. Delaire, M.L. Winterrose, L. Mauger, C.W. Li, A.O. Sheets, M.B. Stone, D.L. Abernathy, Y. Xiao et al., Phys. Rev. Lett. 107, 115501 (2011). https://doi.org/10.1103/PhysRevLett.107.115501

    Article  Google Scholar 

  86. A. Van De Walle and M. Asta, Metall. Mater. Trans. A 33, 735 (2002). https://doi.org/10.1007/s11661-002-1002-8

  87. R. Sun, C. Woodward, and A. van de Walle, Phys. Rev. B 95, 214121 (2017). https://doi.org/10.1103/PhysRevB.95.214121

  88. R. Sun and A. van de Walle, Calphad 53, 20 (2016)

    Article  Google Scholar 

  89. M. Dodaran, A.H. Ettefagh, S. Guo, M. Khonsari, W. Meng, N. Shamsaei, and S. Shao, Intermetallics 117, 106670 (2020)

    Article  Google Scholar 

  90. A.R. Natarajan and A. Van der Ven, npj Comput. Mater. 6, 80 (2020). https://doi.org/10.1038/s41524-020-0348-z

    Article  Google Scholar 

  91. S. Muller, J. Phys. Condens. Matter 15, R1429 (2003). https://doi.org/10.1088/0953-8984/15/34/201

    Article  Google Scholar 

  92. B.C. Han, A. Van der Ven, G. Ceder, and B.-J. Hwang, Phys. Rev. B 72, 205409 (2005). https://doi.org/10.1103/PhysRevB.72.205409

    Article  Google Scholar 

  93. D. Lerch, O. Wieckhorst, L. Hammer, K. Heinz, and S. Müller, Phys. Rev. B 78, 121405 (2008). https://doi.org/10.1103/PhysRevB.78.121405

    Article  Google Scholar 

  94. C. Lazo, and F.J. Keil, Phys. Rev. B 79, 245418 (2009). https://doi.org/10.1103/PhysRevB.79.245418

    Article  Google Scholar 

  95. W. Chen, D. Schmidt, W.F. Schneider, and C. Wolverton, Phys. Rev. B 83, 075415 (2011). https://doi.org/10.1103/PhysRevB.83.075415

    Article  Google Scholar 

  96. C. Wolverton,Philos. Mag. Lett. 79, 683 (1999). https://doi.org/10.1080/095008399176724

    Article  Google Scholar 

  97. C. Wolverton, Modell. Simul. Mater. Sci. Eng. 8, 323 (2000). https://doi.org/10.1088/0965-0393/8/3/312

    Article  Google Scholar 

  98. S. Muller, C. Wolverton, L.-W. Wang, and A. Zunger, Acta Mater. 48, 4007 (2000)

    Article  Google Scholar 

  99. S. Muller, C. Wolverton, L.-W. Wang,and A. Zunger, Europhys. Lett. (EPL) 55, 33 (2001). https://doi.org/10.1209/epl/i2001-00377-0

    Article  Google Scholar 

  100. N. Zarkevich, D. Johnson, and A. Smirnov, Acta Mater. 50, 2443 (2002)

    Article  Google Scholar 

  101. S. Müller, L.-W. Wang, and A. Zunger, Modell. Simul. Mater. Sci. Eng. 10, 131 (2002). https://doi.org/10.1088/0965-0393/10/2/303

    Article  Google Scholar 

  102. V. Vaithyanathan, C. Wolverton, and L.Q. Chen, Phys. Rev. Lett. 88, 125503 (2002). https://doi.org/10.1103/PhysRevLett.88.125503

    Article  Google Scholar 

  103. S. Muller, Surface Interface Anal. 38, 1158 (2006)

    Article  Google Scholar 

  104. M. Y. Lavrentiev, D. Nguyen Manh, and S. L. Dudarev, in Solid-Solid Phase Transformations in Inorganic Materials (Trans Tech Publications Ltd, 2011), vol. 172 of Solid State Phenomena, pp. 1002–1007.

  105. D. Kleiven and J. Akola, Acta Mater. 195, 123 (2020)

    Article  Google Scholar 

  106. A. Redermeier and E. Kozeschnik, Model. Simul. Mater. Sci. Eng. 29, 035014 (2021). https://doi.org/10.1088/1361-651x/abe5b2

    Article  Google Scholar 

  107. A. van de Walle, Calphad 33, 266 (2009)

    Article  Google Scholar 

  108. A. van de Walle, P. Tiwary, M.M. de Jong, D.L. Olmsted, M.D. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Calphad 42, 13 (2013)

    Article  Google Scholar 

  109. A. Van der Ven, J. Thomas, Q. Xu, J. Bhattacharya, Math. Comput. Simul. 80, 1393 (2010)

    Article  Google Scholar 

  110. J.C. Thomas and A.V.D. Ven, Phys. Rev. B 88, 214111 (2013). https://doi.org/10.1103/PhysRevB.88.214111

    Article  Google Scholar 

  111. S. Kadkhodaei and A. van de Walle, Comput. Phys. Commun. 246, 106712 (2020)

    Article  Google Scholar 

  112. M. Ångqvist, W.A. Muñoz, J.M. Rahm, E. Fransson, C. Durniak, P. Rozyczko, T.H. Rod, and P. Erhart, Adv. Theory Simul. 2, 1900015 (2019). https://doi.org/10.1002/adts.201900015

    Article  Google Scholar 

  113. J.H. Chang, D. Kleiven, M. Melander, J. Akola, J.M. Garcia-Lastra, and T. Vegge, J. Phys. Condens. Matter 31, 325901 (2019)

    Article  Google Scholar 

  114. L. Kaufman and H. Bernstein (1970).

  115. U.R. Kattner, Tecnol Metal Mater Min 13, 3 (2016)

    Article  Google Scholar 

  116. B. Bocklund, R. Otis, A. Egorov, A. Obaied, I. Roslyakova, Z.-K. Liu, MRS Commun. 9, 618 (2010)

    Article  Google Scholar 

  117. Z.-K. Liu, J. Phase Equilib. Diffus. 30, 517 (2009)

    Article  Google Scholar 

  118. A. van de Walle, R. Sun, Q.-J. Hong, and S. Kadkhodaei, Calphad 58, 70 (2017)

    Article  Google Scholar 

  119. D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B 46, 12587 (1992b). https://doi.org/10.1103/PhysRevB.46.12587

    Article  Google Scholar 

  120. V. Blum and A. Zunger, Phys. Rev. B 70, 155108 (2004). https://doi.org/10.1103/PhysRevB.70.155108

    Article  Google Scholar 

  121. H.Y. Geng, M.H.F. Sluiter, and N.X. Chen, Phys. Rev. B 73, 012202 (2006). https://doi.org/10.1103/PhysRevB.73.012202

    Article  Google Scholar 

  122. S. Kadkhodaei, Q.-J. Hong, and A. van de Walle, Phys. Rev. B 95, 064101 (2017), https://doi.org/10.1103/PhysRevB.95.064101.

  123. A. Van der Ven and G. Ceder, Phys. Rev. B 71, 054102 (2005). https://doi.org/10.1103/PhysRevB.71.054102

    Article  Google Scholar 

  124. A. Van der Ven, G. Ceder, M. Asta, and P.D. Tepesch, Phys. Rev. B 64, 184307 (2001). https://doi.org/10.1103/PhysRevB.64.184307

    Article  Google Scholar 

  125. X. Zhang and M.H.F. Sluiter, J. Phase Equilibria Diffusion 37, 44 (2016). https://doi.org/10.1007/s11669-015-0427-x

    Article  Google Scholar 

  126. A. van de Walle, Nat. Mater. 7, 455 (2008)

    Article  Google Scholar 

  127. Y. Ikeda, A. Carreras, A. Seko, A. Togo, and I. Tanaka, Phys. Rev. B 95, 024305 (2017). https://doi.org/10.1103/PhysRevB.95.024305

    Article  Google Scholar 

  128. Y.-H. Tang and W.A. de Jong, J. Chem. Phys. 150, 044107 (2019). https://doi.org/10.1063/1.5078640

    Article  Google Scholar 

  129. M.Y. Lavrentiev, D. Nguyen-Manh, and S.L. Dudarev, Phys. Rev. B 81, 184202 (2010). https://doi.org/10.1103/PhysRevB.81.184202

    Article  Google Scholar 

  130. F. Körmann, A. A. H. Breidi, S. L. Dudarev, N. Dupin, G. Ghosh, T. Hickel, P. Korzhavyi, J. A. Munoz, and I. Ohnuma, Phys. Stat. Sol. (b) 251, 53 (2014). https://doi.org/10.1002/pssb.201350136

  131. C. Jiang and B.P. Uberuaga, Phys. Rev. Lett. 116, 105501 (2016). https://doi.org/10.1103/PhysRevLett.116.105501

    Article  Google Scholar 

  132. R. Kitchin and T.P. Lauriault, GeoJournal 80, 463 (2015)

    Article  Google Scholar 

  133. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder et al., APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  Google Scholar 

  134. J.J. de Pablo, N.E. Jackson, M.A. Webb, L.-Q. Chen, J.E. Moore, D. Morgan, R. Jacobs, T. Pollock, D.G. Schlom, E.S. Toberer et al., npj Comput. Mater. 5, 41 (2019). https://doi.org/10.1038/s41524-019-0173-4

  135. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013)

  136. A.R. Oganov, C.J. Pickard, Q. Zhu, and R.J. Needs, Nat. Rev. Mater. 4, 331 (2019)

    Article  Google Scholar 

  137. G. Teichert, A. Natarajan, A. Van der Ven, and K. Garikipati, Comput. Methods Appl. Mech. Eng. 371, 113281 (2020), ISSN 0045-7825, http://www.sciencedirect.com/science/article/pii/S0045782520304667.

  138. J. S. Yedidia, W. T. Freeman, and Y. Weiss, in Proceedings of the 13th International Conference on Neural Information Processing Systems (MIT Press, Cambridge, MA, USA, 2000), NIPS’00, pp. 668–674.

  139. H.J. Kappen and W. Wiegerinck, in Advances, in Neural Information Processing Systems. ed. by T.G. Dietterich, S. Becker, Z. Ghahramani (MIT Press, Boston, MA, 2002), pp. 415–422

  140. J.S. Yedidia, W.T. Freeman, and Y. Weiss, IEEE Trans. Inf. Theory 51, 2282 (2005)

    Article  Google Scholar 

  141. D. Barber, Bayesian Reasoning and Machine Learning (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  142. C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995)

    Google Scholar 

  143. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  144. M. Raissi, P. Perdikaris, and G. Karniadakis, J. Comput. Phys. 378, 686 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Muñoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and Variables

Abbreviations and Variables


Abbreviations

APB:

Antiphase boundaries

ASE:

Atomic Simulation Environment (see Ref. 28)

ATAT:

Alloy Theoretic Automated Toolkit (see Refs. 27,107,108)

CASM:

Cluster Approach to Statistical Mechanics (see Refs. 109,110)

CLEASE:

CLuster Expansion in Atomic Simulation Environment (see Ref. 113)

CE:

Cluster expansion

CVM:

Cluster variation method

DAPB:

Diffuse antiphase boundary

DFT:

Density functional theory

ECI:

Effective cluster interaction

HEA:

High-entropy alloy

ICET:

Integrated Cluster Expansion Toolkit (see Ref. 112)

KECI:

Kinetic effective cluster interaction

KRA:

Kinetically resolved activation

PINN:

Physics-informed neural network

P\(^{4}\):

Piecewise Polynomial Potential Partitioning (see Ref. 111)

QE:

Quantum Espresso

SQS:

Special quasirandom structure

SVM:

Support vector machine

VASP:

Vienna Ab Initio Simulation Package

Variables

C :

A cluster configuration

\(F_{\mathrm{cvm}}\) :

Free energy in the cluster variation method (CVM) (defined in Eq. 3)

\(F(\rho )\) :

Free energy functional in terms of the probability distribution function \(\rho \)

\(F^*_{\sigma }\) :

Constrained vibrational free energy (see Eq. 21)

H :

Ising model Hamiltonian

\(J_{\alpha }\) :

Effective cluster interaction (ECI) coefficient for cluster \(\alpha \)

\(J({\mathbf {k}})\) :

Fourier transform of J (see Eq. 18)

\(\mathbf {J_{\alpha }}\) :

A vector of ECIs collected for different configurations

\(K_{\alpha }\) :

Kinetic effective cluster interaction (see Eq. 22)

\({L}_{\text {aug}}\) :

An augmented lattice that includes local distortions of the ideal lattice in addition to the ideal (high-symmetry) lattice (see Eq. 20)

M :

Number of components (typically distinct chemical species) in a crystal lattice

N :

Number of sites (lattice points) in a crystal lattice

\(N_{\alpha }\) :

Number of subclusters in cluster \(\alpha \) (see Fig. 2)

\(P(\boldsymbol{\sigma })\) :

A property of the lattice expanded as a function of the collection of spin variables \(\boldsymbol{\sigma }\) (defined in Eq. 1)

\(\mathbf {P}\) :

A vector of the scalar property of a lattice collected for different configurations

\(Q(\mathbf {v}|X,\mathbf {y})\) :

Bayesian probability density for an ECI over its possible values \(\mathbf {v}\) trained with dataset \(X,\mathbf {y}\)

\(S(\rho )\) :

Entropy functional in terms of the probability distribution function \(\rho \)

T :

Temperature

\(U(\rho )\) :

Internal energy functional in terms of the probability distribution function \(\rho \)

\(V_{\alpha }\) :

Contribution of cluster \(\alpha \) to the internal energy in the cluster variation method (CVM)

X :

A matrix of dependent variables (“input values”) used in a training or test dataset (each row corresponds to an output value in \(\mathbf {y}\), see Eq. 14)

Z :

Partition function

\(a_{\alpha }\) :

Weight of the cluster \(\alpha \) towards the total configurational entropy in the cluster variation method (CVM)

f :

A basic figure

\(i,i', i'',\dots \) :

An individual lattice site

k :

Boltzmann constant

m :

A possible value for \(\sigma _i\); it can take the value of any integer between \(-M/2\) and M/2 except for 0 if M is even, and any integer between \(-(M-1)/2\) and \((M-1)\) \(\div 2\) including 0 if M is odd

\(m_{\alpha }\) :

Multiplicity of cluster \(\alpha \), i.e., the number of symmetrically equivalent clusters \(\alpha \)

\(n, n',n'', \dots \) :

Individual indices used in a Chebyshev polynomial \(\Theta _n\)

\(n_{\alpha }\) :

The number of lattice sites in cluster \(\alpha \)

\(n_{\beta }\) :

The number of lattice sites in cluster \(\beta \)

s :

The set of indices \(\{n, n',n'',\dots \}\) for the order of the Chebyshev polynomial \(\Theta _n\) used in building a cluster function \(\phi _{\alpha s}\) (see Eq. 4)

\(x_\mathrm{A}, x_\mathrm{B}\) :

Normalized concentration of atom of type A (B) in an alloy

\(\mathbf {y}\) :

A vector of dependent variables (“output values”) used in a training or test dataset (see also X)

\({\bar{\Pi }}_f (x, \eta )\) :

Generalized correlation function for basic figure f in terms of concentration x and long-range order parameter \(\eta \), (see, e.g., Eq. 16)

\(\boldsymbol{\Pi }\) :

Matrix of cluster correlation functions

\(\Theta _n(\sigma _i)\) :

Discrete Chebyshev polynomial of order n as a function of the spin variable \(\sigma _i\)

\(\alpha , \beta , \gamma \) :

Clusters of lattice sites, relationships between them are explained for each model in the text (see Figs. 1 and 2)

\(\alpha '\) :

A set of clusters that are symmetrically equivalent to cluster \(\alpha \), i.e., clusters that belong to the same orbit as cluster \(\alpha \)

\(\zeta _{\sigma }\) :

Vicinity of lattice distortions in an augmented lattice \({L}_{\text {aug}}\) (see Eq. 20)

\(\eta \) :

Long-range order parameter

\(\rho _{\alpha }\) :

Cluster (probability) distribution function in the cluster variation method (CVM)

\(\rho _\mathrm{ex}\) :

Equilibrium probability distribution function

\(\sigma _i\) :

The spin or occupation variable of site i, associated with the type of atom at site i in a cluster, e.g., in a binary alloy, +1 if site i is occupied by atom A and −1 if occupied by atom B

\(\boldsymbol{\sigma }\) :

The vector of spin variables for all the N sites in the crystal

\({\hat{\sigma }}({\mathbf {k}},\sigma )\) :

Fourier transform of \(\sigma \) (see Eq. 18)

\(\varsigma \) :

The neighbor order parameter in the Bethe model; \(\varsigma = 1\) for perfect neighbor order and \(\varsigma =0\) for perfect neighbor disorder

\({\phi }_{\alpha s}\) :

The cluster function corresponding to cluster \(\alpha \) and polynomial order s (defined in Eq. 4)

\({\bar{\phi }}_{\alpha }(\boldsymbol{\sigma })\) :

The multisite or cluster correlation function for the collection of spin variables \(\boldsymbol{\sigma }\) corresponding to cluster \(\alpha \) (defined in Eq. 2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadkhodaei, S., Muñoz, J.A. Cluster Expansion of Alloy Theory: A Review of Historical Development and Modern Innovations. JOM 73, 3326–3346 (2021). https://doi.org/10.1007/s11837-021-04840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04840-6

Navigation