Skip to main content
Log in

Computational Fluid Dynamics Study on Enhanced Circulation Flow in a Side-Blown Copper Smelting Furnace

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Side-blown smelting technology has been widely adopted in the copper smelting process. In this study, the stirring uniformity of molten bath and the smelting efficiency of the copper smelting process was improved by a computational fluid dynamics method. Simulation of the gas–slag–matte three-phase flow in the furnace was performed by the volume of a fraction multiphase model coupled to a realizable k–ε turbulence model. The flow field can be divided into five zones, high-speed injection, strong-loop, weak-loop, gas overflow and separation, and settlement zones. Three improved gas injection modes, including oblique, horizontal staggered, and vertical staggered, have been proposed to improve the flow field of the weak-loop zone in the center of the molten bath. Of these methods, the oblique injection mode showed the best improvement effect. The stirring intensity and the slag splashing amount were nearly twice and only one-quarter of the original condition, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Chen, T.Z. Yang, S. Bin, W.F. Liu, D.C. Zhang, W.D. Bin, and L. Zhang, JOM 66, 1664. (2014).

    Article  Google Scholar 

  2. X.L. Li, Y. Liu, D.X. Wang, and T.A. Zhang, Metals 10, 1520. (2020).

    Article  Google Scholar 

  3. C. Ma, and W.X. Fang, Adv. Mat. Res. 361, 31. (2011).

    Google Scholar 

  4. P. Chen, H. Xiao, J. Chen, L. Chen, D.C. Zhang, W.F. Liu, and T.Z. Yang, J. Sustain. Metall. 6, 344. (2019).

    Article  Google Scholar 

  5. L. Chen, Z.D. Hao, T.Z. Yang, W.F. Liu, D.C. Zhang, L. Zhang, S. Bin, and W.D. Bin, JOM 67, 1123. (2015).

    Article  Google Scholar 

  6. A. Valencia, M. Rosales, R. Paredes, C. Leon, and A. Moyano, Int. Commun. Heat Mass. 33, 302. (2006).

    Article  Google Scholar 

  7. H.L. Zhao, T.T. Lu, P. Yin, L.Z. Mu, and F.Q. Liu, Metals 9, 565. (2019).

    Article  Google Scholar 

  8. X. Jiang, Z.X. Cui, M. Chen, and B.J. Zhao, Metall. Mater. Trans. B 50B, 782. (2019).

    Article  Google Scholar 

  9. Z.Q. Dai, B.Y. Wang, L.X. Qi, and H.H. Shi, Acta Mech. Sin. 22, 443. (2006).

    Article  Google Scholar 

  10. G.S. Sborshchikov, and AYu. Terekhova, Glass Ceram. 73, 11. (2016).

    Google Scholar 

  11. R. Cheng, L.J. Zhang, Y.B. Yin, and J.M. Zhang, Metals 11, 369. (2021).

    Article  Google Scholar 

  12. F.H. Liu, D.B. Sun, R. Zhu, K. Dong, and R.G. Bai, ISIJ Int. 58, 852. (2018).

    Article  Google Scholar 

  13. X. Jiang, Z.X. Cui, M. Chen, and B.J. Zhao, Metall. Mater. Trans. B 50B, 173. (2019).

    Article  Google Scholar 

  14. D. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer, Metall. Mater. Trans. B 50B, 2403. (2019).

    Article  Google Scholar 

  15. D. Obiso, M. Akashi, S. Kriebitzsch, B. Meyer, M. Reuter, S. Eckert, and A. Richtercfd, Metall. Mater. Trans. B 51B, 1509. (2020).

    Article  Google Scholar 

  16. H.J. Yang, S.P. Vanka, and B.G. Thomas, ISIJ Int. 59, 956. (2019).

    Article  Google Scholar 

  17. Y.T. Liu, T.Z. Yang, Z. Chen, Z.Y. Zhu, L. Zhang, and Q. Huang, Trans. Nonferrous Met. Soc. China 1, 249. (2020).

    Article  Google Scholar 

  18. J.P.T. Kapusta, JOM 69, 970. (2017).

    Article  Google Scholar 

  19. N.J. Themelis, P. Tarassoff, and J. Szekely, Trans. Metall. Soc. AIME 245, 2425. (1969).

    Google Scholar 

  20. H.L. Zhang, C.Q. Zhou, W.U. Bing, and Y.M. Chen, J. S. Afr. Inst. Min. Metall. 115, 457. (2015).

    Article  Google Scholar 

  21. P. Shao and L.P. Jiang, Int. J. Mol. Sci. 20, 5757. (2019).

    Article  Google Scholar 

  22. E.O. Hoeffele and J.K. Brimacombe, Metall. Trans. B 10B, 631. (1979).

    Article  Google Scholar 

  23. Z.Q. Xiao and S.H. Zhan, Chin. J. Process. Eng. 6, 43. (in Chinese) (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Innovation-Driven Development Project (AA18242042-1), the National Natural Science Foundation of China (51974018), and the Fundamental Research Funds for the Central Universities (FRF-TP-19-016A3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Zhao or Fengqin Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Lu, T., Zhou, Y. et al. Computational Fluid Dynamics Study on Enhanced Circulation Flow in a Side-Blown Copper Smelting Furnace. JOM 73, 2724–2732 (2021). https://doi.org/10.1007/s11837-021-04800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04800-0

Navigation