Skip to main content
Log in

Anisotropic Study of Ti6Al4V Alloy Formed by Selective Laser Melting

  • Advanced Casting and Melt Processing Technology for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a manufacturing technology that involves melting metal powder beds. Due to the temperature gradient during the course of forming, anisotropy is further caused by oriented grain growth. However, the influence of process parameters on anisotropy has not been studied. Two types of parameter scanning strategies and rotation angle increments were selected to alter the growth tendency of grains, thus affecting anisotropy. Comparing the STRIPES scanning strategy and the CHESS strategy, the latter can restrain anisotropy, while in the former, the anisotropy of tensile stress is influenced by the layer angle increment. The maximum tensile strength of SLM-formed parts in the formed direction deviates from an angle of 60° (1235 MPa and elongation of 5.3%), and the maximum microhardness property appears at the formed direction surface, namely, the top side surface (487 HV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings in this paper are available from the corresponding authors upon reasonable request.

References

  1. S. Wen, K. Chen, W. Li, Y. Zhou, Q. Wei, and Y. Shi, Mater. Des. 175, 107811. (2019).

    Article  Google Scholar 

  2. T. Amine, C.S. Kriewall, and J.W. Newkirk, JOM 70, 384. (2018).

    Article  Google Scholar 

  3. D. Kong, C. Dong, X. Ni, and X. Li, Npj Mater. Degrad. 3, 24. (2019).

    Article  Google Scholar 

  4. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, Mater. Sci. Eng. A 663, 116. (2016).

    Article  Google Scholar 

  5. G. Matsagopane, E.O. Olakanmi, A. Botes, and S. Kutua, JOM 71, 1840. (2019).

    Article  Google Scholar 

  6. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, and D. Trimble, Int. J. Mach. Tools Manuf. 128, 1. (2018).

    Article  Google Scholar 

  7. B. Zhang, Y. Li, and Q. Bai, Chin. J. Mech. Eng. 30, 515. (2017).

    Article  Google Scholar 

  8. J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand, and N.Q. Vo, Acta Mater. 153, 35. (2018).

    Article  Google Scholar 

  9. R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, and X. Cao, J. Alloys Compd. 815, 152422. (2020).

    Article  Google Scholar 

  10. H. Azizi, H. Zurob, B. Bose, S.R. Ghiaasiaan, X. Wang, S. Coulson, V. Duz, and A.B. Phillion, Addit. Manuf. 21, 529. (2018).

    Google Scholar 

  11. T. Maity, N. Chaweke, J.T. Kim, J. Eckert, and K.G. Prashanth, Manuf. Lett. 15, 33. (2018).

    Article  Google Scholar 

  12. K.V. Yang, P. Rometsch, C.H.J. Davies, A. Huang, and X. Wu, Mater. Des. 154, 275. (2018).

    Article  Google Scholar 

  13. Z. Chen, S. Chen, Z. Wei, L. Zhang, P. Wei, B. Lu, S. Zhang, and Y. Xiang, PNS: MI 28, 496. (2018).

    Google Scholar 

  14. J.P. Best, X. Mseder, J. Michler, and A.B. Spierings, Adv. Eng. Mater. 21, 1801113. (2018).

    Article  Google Scholar 

  15. K. Kunze, T. Etter, J. Grasslin, and V. Shklover, Mater. Sci. Eng. A 620, 213. (2014).

    Article  Google Scholar 

  16. T. Etter, K. Kunze, F. Geiger, and H. Meidani, IOP Conf. Ser. Mater. Sci. Eng. 82, 012097. (2015).

    Article  Google Scholar 

  17. H. Zhang, D. Gu, L. Xi, H. Zhang, M. Xia, and C. Ma, J. Mater. Sci. Technol. 35, 1128. (2019).

    Article  Google Scholar 

  18. Y. Yang, Y. Zhu, M.M. Khonsari, and H. Yang, Wear 428, 376. (2019).

    Article  Google Scholar 

  19. F. Liu, H. Cheng, X. Yu, G. Yang, C. Huang, X. Lin, and J. Chen, Optics Laser Technol. 99, 342. (2018).

    Article  Google Scholar 

  20. Y. Zhang, Y. Guo, Y. Chen, L. Kang, Y. Cao, H. Qi, and S. Yang, Metals 9, 1111. (2019).

    Article  Google Scholar 

  21. Z. Zhang, B. Chu, L. Wang, and Z. Lu, J. Alloys Compd. 791, 166. (2019).

    Article  Google Scholar 

  22. J.H. Robinson, I.R.T. Ashton, E. Jones, P. Fox, and C. Sutcliffe, Rapid Prototyp. J. 25, 289. (2019).

    Article  Google Scholar 

  23. Y. Wang, C. Yu, L. Xing, K. Li, J. Chen, W. Liu, J. Ma, and Z. Shen, J. Mater. Process. Technol. 281, 116591. (2020).

    Article  Google Scholar 

  24. Q. Liu, Y. Wang, H. Zheng, K. Tang, L. Ding, H. Li, and S. Gong, Mater. Sci. Eng. A 660, 24. (2016).

    Article  Google Scholar 

  25. J. Han, M. Wu, Y. Ge, and J. Wu, Int. J. Adv. Manuf. Technol. 106, 1567. (2020).

    Article  Google Scholar 

  26. S. Sun, K. Hagihara, and T. Nakano, Mater. Des. 140, 307. (2018).

    Article  Google Scholar 

  27. L. Thijs, K. Kempen, J.P. Kruth, and J.V. Humbeeck, Acta Mater. 61, 1809. (2013).

    Article  Google Scholar 

  28. D. Agius, K.I. Kourousis, C. Wallbrink, and T. Song, Mater. Sci. Eng. A 701, 85. (2017).

    Article  Google Scholar 

  29. M. Wu, P. Lai, and J. Chen, Mater. Sci. Eng. A 650, 295. (2016).

    Article  Google Scholar 

  30. W. Sun, Y. Ma, W. Huang, W. Zhang, and X. Qian, Int. J. Fatigue 130, 105260. (2020).

    Article  Google Scholar 

  31. J. He, D. Li, W. Jiang, L. Ke, G. Qin, Y. Ye, Q. Qin, and D. Qiu, Materials 12, 321. https://doi.org/10.3390/ma12020321 (2019).

    Article  Google Scholar 

  32. X. Miao, X. Liu, P. Lu, J. Han, W. Duan, and M. Wu, Metals 10, 1379. (2020).

    Article  Google Scholar 

  33. D. Wang, S. Wu, Y. Yang, W. Dou, S. Deng, Z. Wang, and S. Li, Materials 11, 1821. (2018).

    Article  Google Scholar 

  34. J. Akram, P. Chalavadi, D. Pal, and B. Stucker, Addit. Manuf. 21, 255. (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fujian Insdustry-University Cooperation Project (Grant No. 2020 H6018) and Fujian Innovation Center of Additive Manufacturing (Grant No. ZCZZ20-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Chen, X., Huang, X. et al. Anisotropic Study of Ti6Al4V Alloy Formed by Selective Laser Melting. JOM 73, 3804–3811 (2021). https://doi.org/10.1007/s11837-021-04765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04765-0

Navigation