Skip to main content
Log in

Nanoporous CoFe2O4 Loaded with Pt-Ag for Photocatalytic Hydrogen Evolution

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanoporous CoFe2O4 loaded with Pt-Ag was prepared by dealloying melt-spun Al-Co-Fe-Pt-Ag ribbons and then calcining to increase their hydrogen evolution ability. Results revealed that noble Pt and Ag nanoparticles were homogeneously dispersed and loaded on CoFe2O4 nanosheets. When the precursor alloy was Al90.80Co3Fe6Pt0.08Ag0.12, the obtained sample exhibited the highest hydrogen evolution rate of approximately 2.36 mmol/h/g under full-spectrum irradiation, being 24 times that of CoFe2O4 without Pt or Ag. These analyses indicate that using the appropriate amount of Ag could promote visible-light absorption and Pt could serve as an electron sink for effective electron–hole pair separation. Moreover, the Schottky barrier that formed between the Pt-Ag phase and CoFe2O4 effectively suppressed recombination of electron–hole pairs and improved the utilization of photogenerated electrons. Simultaneous loading of Pt and Ag on CoFe2O4 resulted in a synergistic effect that contributed to the performance increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Chaudhary, S. Singh, V.D. Vankar, and N. Khare, Int. J. Hydrogen Energy 42, 7826. (2016).

    Article  Google Scholar 

  2. R. Solmaz, G. Kardas, and G. Fabrication, Int. J. Hydrogen Energy 36, 12079. (2011).

    Article  Google Scholar 

  3. T. Gholami, M. Salavati-Niasari, and S. Varshoy, Int. J. Hydrogen Energy 42, 5235. (2016).

    Article  Google Scholar 

  4. A. Fujishima, and K. Honda, Nature 238, 37. (1972).

    Article  Google Scholar 

  5. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis, Chem. Rev. 110, 6446. (2010).

    Article  Google Scholar 

  6. I. Roger, M.A. Shipman, and M.D. Symes, Nat. Rev. Chem. 1, 0003. (2017).

    Article  Google Scholar 

  7. J. Li, L. Cai, J. Shang, Y. Yu, and L. Zhang, Adv. Mater. 28, 4059. (2016).

    Article  Google Scholar 

  8. X. Sheng, T. Xu, and X. Feng, Adv. Mater. 31, 1805132. (2019).

    Article  Google Scholar 

  9. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, and J. Tang, Energy Environ. Sci. 8, 731. (2015).

    Article  Google Scholar 

  10. J. Fu, J. Yu, C. Jiang, and B. Cheng, Adv. Energy Mater. 8, 1701503. (2018).

    Article  Google Scholar 

  11. X. Yu, F. Liu, J. Bi, B. Wang, and S. Yang, Nano Energy 33, 469. (2017).

    Article  Google Scholar 

  12. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, and F. Cui, Appl. Catal. B Environ. 220, 290. (2018).

    Article  Google Scholar 

  13. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A.A. Al-Ghamdi, Adv. Mater. 29, 1601694. (2017).

    Article  Google Scholar 

  14. M. Mousavi, A. Habibi-Yangjeh, and S.R. Pouran, J. Mater. Sci. Mater. Electron. 29, 1719. (2018).

    Article  Google Scholar 

  15. Y. Jin, D.H. Keum, S.J. An, J. Kim, H.S. Lee, and Y.H. Lee, Adv. Mater. 27, 5534. (2015).

    Article  Google Scholar 

  16. G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, and J. Ye, Adv. Funct. Mater. 26, 6822. (2016).

    Article  Google Scholar 

  17. X. Lü, A. Chen, Y. Luo, P. Lu, Y. Dai, E. Enriquez, P. Dowden, H. Xu, P.G. Kotula, A.K. Azad, D.A. Yarotski, R.P. Prasankumar, A.J. Taylor, J.D. Thompson, and Q. Jia, Nano Lett. 16, 5751. (2016).

    Article  Google Scholar 

  18. M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, and L. Guo, Nat. Energy 1, 16151. (2016).

    Article  Google Scholar 

  19. B. Wang, M. Liu, Z. Zhou, and L. Guo, Adv. Sci. 2, 1500153. (2015).

    Article  Google Scholar 

  20. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu, Nature 453, 638. (2008).

    Article  Google Scholar 

  21. B. Wang, S. Shen, and L. Guo, Chem. Cat. Chem. 8, 798. (2016).

    Google Scholar 

  22. Y. Zheng, L. Lin, X. Ye, F. Guo, and X. Wang, Angew. Chem. Int. Ed. 53, 11926. (2014).

    Article  Google Scholar 

  23. J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, and C. Li, Angew. Chem. Int. Ed. 54, 9111. (2015).

    Article  Google Scholar 

  24. R. Li, H. Han, F. Zhang, D. Wang, and C. Li, Energy Environ. Sci. 7, 1369. (2014).

    Article  Google Scholar 

  25. R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, and C. Li, Nat. Commun. 4, 1432. (2013).

    Article  Google Scholar 

  26. B. Wang, S. Shen, and L. Guo, Appl. Catal. B Environ. 166, 320. (2015).

    Article  Google Scholar 

  27. T. Wei, Y.N. Zhu, Z. Gu, X. An, L.M. Liu, Y. Wu, H. Liu, J. Tang, and J. Qu, Nano Energy 51, 764. (2018).

    Article  Google Scholar 

  28. H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu, X. Yuan, G. Zeng, Z.J. Xu, S. Li, and J.W. Chew, Appl. Catal. B Environ. 245, 290. (2019).

    Article  Google Scholar 

  29. T. Yang, L.L. Tian, E.M. Zhou, G.G. He, D.D. Chen, and J.Q. Xie, Biosens. Bioelectron. 143, 111634. (2019).

    Article  Google Scholar 

  30. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, and K. Nakata, J. Photochem. Photobiol. A Chem. 374, 161. (2019).

    Article  Google Scholar 

  31. H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, and J.W. Chew, Adv. Mater. 30, 1704561. (2018).

    Article  Google Scholar 

  32. B. Wang, H. Cai, D. Zhao, M. Song, P. Guo, S. Shen, D. Li, and S. Yang, Appl. Catal. B: Environ. 244, 486. (2019).

    Article  Google Scholar 

  33. J. Ran, T.Y. Ma, G. Gao, X.W. Du, and S.Z. Qiao, Energy Environ. Sci. 8, 3708. (2015).

    Article  Google Scholar 

  34. Y. Wu, H. Wang, W. Tu, S. Wu, Y. Liu, Y.Z. Tan, H. Luo, X. Yuan, and J.W. Chew, Appl. Catal. B Environ. 229, 181. (2019).

    Article  Google Scholar 

  35. T.W. Kim, Y. Ping, G.A. Galli, and K.S. Choi, Nat. Commun. 6, 8769. (2015).

    Article  Google Scholar 

  36. H. Zhou, J. Pan, L. Ding, Y. Tang, J. Ding, Q. Guo, T.X. Fan, and D. Zhang, Int. J. Hydrogen Energy 39, 16293. (2014).

    Article  Google Scholar 

  37. Y. Pan, and M. Wen, Int. J. Hydrogen Energy 43, 22055. (2018).

    Article  Google Scholar 

  38. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, and M. Abedi, Sep. Purif. Technol. 199, 64. (2018).

    Article  Google Scholar 

  39. H. Zhao, M. Wu, J. Liu, Z. Deng, Y. Li, and B.L. Su, Appl. Catal. B: Environ. 184, 182. (2016).

    Article  Google Scholar 

  40. X. Yu, G. Liu, W. Li, L. An, Z. Li, J. Liu, and P. Hu, Int. J. Hydrogen Energy 43, 8232. (2018).

    Article  Google Scholar 

  41. W. Shi, Y. Song, X. Zhang, D. Duan, H. Wang, Z. Sun, and J. Chin, Chem. Soc. 65, 1286. (2018).

    Google Scholar 

  42. S. Munjal, N. Khare, C. Nehate, and V. Koul, J. Magn. Mater. 404, 166. (2016).

    Article  Google Scholar 

  43. B. Bishal, P. Bappi, P. Arijita, S.D. Siddhartha, and F.L. Paederia, IET Nanobiotechnol. 12, 235. (2018).

    Article  Google Scholar 

  44. W. Shi, Y. Song, X. Zhang, D. Duan, H. Wang, and Z. Sun, Int. J. Hydrogen Energy 44, 13040. (2019).

    Article  Google Scholar 

  45. G.G. He, Y. Wen, C. Ma, X.Y. Li, L.M. Gao, and Z.B. Sun, Int. J. Hydrogen Energy 46, 5369. (2021).

    Article  Google Scholar 

  46. S.X. Liu, Z.P. Qu, X.W. Han, and C.L. Sun, Catal. Today 93, 877. (2004).

    Article  Google Scholar 

  47. Z. Jiang, Q. Ouyang, B. Peng, Y. Zhang, and L. Zan, J. Mater. Chem. 2, 19861. (2014).

    Article  Google Scholar 

  48. A.P. Dementjev, O.P. Ivanova, L.A. Vasilyev, A.V. Naumkin, D.M. Nemirovsky, and D.Y. Shalaev, J. Vac. Sci. Technol. A 12, 423. (1994).

    Article  Google Scholar 

  49. B. Gupta, A.A. Melvin, T. Matthews, S. Dash, and A.K. Tyagi, Renew. Sustain. Energy Rev. 58, 1366. (2016).

    Article  Google Scholar 

  50. K. Rajeshwar, C.R. Chenthamarakshan, Y. Ming, and W.J. Sun, J. Electroanal. Chem. 538, 173. (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51771141). The authors also thank Ms. Jiamei Liu at the Instrument Analysis Center of Xi’an Jiaotong University for assistance with XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanbo Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 397 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Wen, Y., Ma, C. et al. Nanoporous CoFe2O4 Loaded with Pt-Ag for Photocatalytic Hydrogen Evolution. JOM 73, 2798–2807 (2021). https://doi.org/10.1007/s11837-021-04762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04762-3

Navigation