Skip to main content
Log in

Instance Segmentation for Direct Measurements of Satellites in Metal Powders and Automated Microstructural Characterization from Image Data

  • Microstructure Characterization: Descriptors, Data-Intensive Techniques, and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We propose instance segmentation as a useful tool for image analysis in materials science. Instance segmentation is an advanced technique in computer vision which generates individual segmentation masks for every object of interest that is recognized in an image. Using an out-of-the-box implementation of Mask R-CNN, instance segmentation is applied to images of metal powder particles produced through gas atomization. Leveraging transfer learning allows for the analysis to be conducted with a very small training set of labeled images. As well as providing another method for measuring the particle size distribution, we demonstrate the first direct measurements of the satellite content in powder samples. After analyzing the results for the labeled data dataset, the trained model was used to generate measurements for a much larger set of unlabeled images. The resulting particle size measurements showed reasonable agreement with laser scattering measurements. The satellite measurements were self-consistent and showed good agreement with the expected trends for different samples. Finally, we present a small case study showing how instance segmentation can be used to measure spheroidite content in the UltraHigh Carbon Steel DataBase, demonstrating the flexibility of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Song and Y. Yan, Appl. Surf. Sci. 285, 858 (2013). https://doi.org/10.1016/J.APSUSC.2013.09.002.

    Article  Google Scholar 

  2. A.R. Kitahara and E.A. Holm, Integr. Mater. Manuf. Innov. 7(3), 148 (2018). https://doi.org/10.1007/s40192-018-0116-9.

    Article  Google Scholar 

  3. W. Li, K.G. Field, and D. Morgan, NPJ Comput. Mater. 4(1), 1 (2018). https://doi.org/10.1038/s41524-018-0093-8.

    Article  Google Scholar 

  4. L. Scime and J. Beuth, Addit. Manuf. 19, 114 (2018). https://doi.org/10.1016/j.addma.2017.11.009.

    Article  Google Scholar 

  5. L. Tan Phuc and M. Seita, Mater. Des. 164, 107562 (2019). https://doi.org/10.1016/J.MATDES.2018.107562.

    Article  Google Scholar 

  6. B.L. DeCost and E.A. Holm, Comput. Mater. Sci. 126, 438 (2017). https://doi.org/10.1016/J.COMMATSCI.2016.08.038.

    Article  Google Scholar 

  7. B.L. DeCost, B. Lei, T. Francis, and E.A. Holm, Microsc. Microanal. 25, 1 (2019). https://doi.org/10.1017/S1431927618015635.

    Article  Google Scholar 

  8. Z. Chen and S. Daly, Mater. Sci. Eng. A 736, 61 (2018). https://doi.org/10.1016/j.msea.2018.08.083.

    Article  Google Scholar 

  9. T. Stan, Z.T. Thompson, and P.W. Voorhees, Mater. Charact. 160, 110119 (2020). https://doi.org/10.1016/j.matchar.2020.110119.

    Article  Google Scholar 

  10. C. Kusche, T. Reclik, M. Freund, T. Al-Samman, U. Kerzel, and S. Korte-Kerzel, PLoS ONE 14(5), e0216493 (2019). https://doi.org/10.1371/journal.pone.0216493.

    Article  Google Scholar 

  11. F. Ram, S. Wright, S. Singh, and M. De Graef, Ultramicroscopy 181, 17 (2017). https://doi.org/10.1016/j.ultramic.2017.04.016.

    Article  Google Scholar 

  12. A. Ziletti, D. Kumar, M. Scheffler, and L.M. Ghiringhelli, Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-05169-6.

    Article  Google Scholar 

  13. A. Campbell, P. Murray, E. Yakushina, S. Marshall, and W. Ion, Mater. Des. 141, 395 (2018). https://doi.org/10.1016/J.MATDES.2017.12.049.

    Article  Google Scholar 

  14. W. Rawat and Z. Wang, in Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (2017). https://doi.org/10.1162/NECO_a_00990.

  15. S.A. Taghanaki, K. Abhishek, J.P. Cohen, J. Cohen-Adad, and G. Hamarneh (2019). arXiv:1910.07655.

  16. Z.Q. Zhao, P. Zheng, S.T. Xu, and X. Wu, IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212 (2019). https://doi.org/10.1109/TNNLS.2018.2876865.

    Article  Google Scholar 

  17. T.Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C.L. Zitnick, and P. Dollár, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. (2015). https://doi.org/10.1109/CVPR.2014.471.

    Article  Google Scholar 

  18. K. He, G. Gkioxari, P. Dollár, and R. Girshick (2017). arXiv:1703.06870.

  19. S. Ren, K. He, R. Girshick, and J. Sun (2015). arXiv:1506.01497.

  20. I.E. Anderson, E.M. White, and R. Dehoff, Curr. Opin. Solid State Mater. Sci. 22(1), 8 (2018). https://doi.org/10.1016/J.COSSMS.2018.01.002.

    Article  Google Scholar 

  21. J. Clayton, D. Millington-Smith, and B. Armstrong, JOM 67(3), 544 (2015). https://doi.org/10.1007/s11837-015-1293-z.

    Article  Google Scholar 

  22. P. Sun, Z.Z. Fang, Y. Zhang, and Y. Xia, JOM 69(10), 1853 (2017). https://doi.org/10.1007/s11837-017-2513-5.

    Article  Google Scholar 

  23. A. Dutta and A. Zisserman, in Proceedings of the 27th ACM International Conference on Multimedia (ACM, New York, NY, USA, 2019), MM ’19. https://doi.org/10.1145/3343031.3350535.

  24. A. Dutta, A. Gupta, and A. Zissermann. VGG Image Annotator (VIA) (2016). http://www.robots.ox.ac.uk/~vgg/software/via/. Accessed 24 May 2021.

  25. R. Girshick, arXiv (2015). arXiv:1504.08083.

  26. R. Girshick, J. Donahue, T. Darrell, and J. Malik (2013). arXiv:1311.2524.

  27. Y. Wu, A. Kirillov, F. Massa, W.Y. Lo, and R. Girshick. Detectron2 (2019). https://github.com/facebookresearch/detectron2. Accessed 24 May 2021.

  28. L. Taylor and G. Nitschke, arXiv (2017). arXiv:1708.06020.

  29. S.P. Narra, Z. Wu, R. Patel, J. Capone, M. Paliwal, J. Beuth, and A. Rollett, Addit. Manuf. 34, 101188 (2020). https://doi.org/10.1016/j.addma.2020.101188.

    Article  Google Scholar 

  30. B.L. DeCost and E.A. Holm, Data Brief 9, 727 (2016). https://doi.org/10.1016/J.DIB.2016.10.011.

    Article  Google Scholar 

  31. M.D. Hecht, B.A. Webler, and Y.N. Picard, Mater. Charact. 117, 134 (2016). https://doi.org/10.1016/j.matchar.2016.04.012.

    Article  Google Scholar 

  32. B.L. DeCost, M.D. Hecht, T. Francis, B.A. Webler, Y.N. Picard, and E.A. Holm, Integr. Mater. Manuf. Innov. 6(2), 197 (2017). https://doi.org/10.1007/s40192-017-0097-0.

    Article  Google Scholar 

  33. B. DeCost, M. Hecht, T. Sibley, T. Francis, B. Webler, Y. Picard, and E. Holm, Ultrahigh Carbon Steel Microconstituent Annotations (2018). https://materialsdata.nist.gov/handle/11256/964?show=full. Accessed 24 May 2021.

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant CMMI-1826218 and by the Air Force Research Laboratory under Cooperative Agreement No. FA8650-19-2-5209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Holm.

Ethics declarations

Disclaimer

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohn, R., Anderson, I., Prost, T. et al. Instance Segmentation for Direct Measurements of Satellites in Metal Powders and Automated Microstructural Characterization from Image Data. JOM 73, 2159–2172 (2021). https://doi.org/10.1007/s11837-021-04713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04713-y

Navigation