Skip to main content

Microwave-Based Approach to Recovering Zinc from Electric Arc Furnace Dust Using Silicon Powder as a Non-carbonaceous Reductant

Abstract

In the recycling of zinc from electric arc furnace dust using microwave-based furnaces, the use of graphite powder as a reductant results in significant greenhouse gas emissions. In this study, graphite was replaced by a non-carbonaceous reductant in the form of silicon powder. The sample is heated in a microwave-based furnace under 7.5 kW maximum power irradiation at 2.45 GHz. The results clearly indicate that the reaction proceeded between zinc ferrite and silicon powder. The maximum removal rate of zinc obtained was 80% in cases where more than 10 times the stoichiometric amount of silicon powder was used for a heating time of more than 20 min. The apparent activation energy of microwave-based heating was 115.39 kJ/mol lower than that when heating with a conventional furnace.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. T.E. Graedel, D. van Beers, M. Bertram, K. Fuse, R.B. Gordon, A. Gritsinin, E.M. Harper, A. Kapur, R.J. Klee, R. Lifset, L. Memon, and S. Spatari, J. Ind. Ecol. 9, 67. (2005).

    Google Scholar 

  2. P.B. Queneau, R. Leiby, and R. Robinson, World Metall. Erzmet. 68, 149. (2015).

    Google Scholar 

  3. X. Lin, Z. Peng, J. Yan, Z. Li, J.Y. Hwang, Y. Zhang, G. Li, and T. Jiang, J. Clean. Prod. 149, 1079. (2017).

    Google Scholar 

  4. C. Pichler, and J. Antrekowitsch, JOM 69, 999. (2017).

    Google Scholar 

  5. P.J.W.K. de Buzin, N.C. Heck, and A.C.F. Vilela, J. Mater. Res. Technol. 6, 194. (2017).

    Google Scholar 

  6. M.C. da Silva, A.M. Bernardes, C.P. Bergmann, J.A.S. Tenório, and D.C.R. Espinosa, Ironmak. Steelmak. 35, 315. (2008).

    Google Scholar 

  7. A.J.B. Dutra, P.R.P. Paiva, and L.M. Tavares, Miner. Eng. 19, 478. (2006).

    Google Scholar 

  8. J. Antrekowitsch, and H. Antrekowitsch, JOM 53, 26. (2001).

    Google Scholar 

  9. M. Zhang, J. Li, Q. Zeng, and Q. Mou, Appl. Sci. 9, 1. (2019).

    Google Scholar 

  10. J. Veres, M. Lovas, S. Jakabsky, V. Sepelak, and S. Hredzak, Hydrometallurgy 129–130, 67. (2012).

    Google Scholar 

  11. P.K. Hazaveh, S. Karimi, F. Rashchi, and S. Sheibani, Ecotoxicol. Environ. Saf. 202, 1. (2020).

    Google Scholar 

  12. F. Kukurugya, T. Vindt, and T. Havlík, Hydrometallurgy 154, 20. (2015).

    Google Scholar 

  13. D. Zhang, H. Ling, T. Yang, W. Liu, and L. Chen, J. Clean. Prod. 224, 536. (2019).

    Google Scholar 

  14. J. Aromaa, A. Kekki, A. Stefanova, H. Makkonen, and O. Forsén, Miner. Process. Extr Metall. 125, 242. (2016).

    Google Scholar 

  15. M. Omran, T. Fabritius, and E.P. Heikkinen, J. Sustain. Metall. 5, 331. (2019).

    Google Scholar 

  16. X. Sun, J.Y. Hwang, and X. Huang, JOM 60, 35. (2008).

    Google Scholar 

  17. D.E. Khaled, N. Novas, J.A. Gazquez, and F. Manzano-Agugliaro, Renew. Sustain. Energy Rev. 82, 2880. (2018).

    Google Scholar 

  18. Q. Ye, Z. Peng, G. Li, J. Lee, Y. Liu, M. Liu, L. Wang, M. Rao, Y. Zhang, T. Jiang, and A.C.S. Sustain, Chem. Eng. 7, 9515. (2019).

    Google Scholar 

  19. E. Kim, T. Kim, J. Lee, Y. Kang, and K. Morita, Ironmak. Steelmak. 39, 45. (2012).

    Google Scholar 

  20. R.E. Newnham, S.J. Jang, M. Xu, and F. Jones, Ceram. Trans. 21, 51. (1991).

    Google Scholar 

  21. Z. Peng, and J.Y. Hwang, Int. Mater. Rev. 60, 30. (2015).

    Google Scholar 

  22. A.K. Dasgupta, J. Mazumder, and P. Li, J. Phys. Appl. Phys. 102, 053108. (2007).

    Google Scholar 

  23. K.E. Haque, Int. J. Miner. Process. 57, 1. (1999).

    Google Scholar 

  24. S. Solomon, G.K. Plattner, R. Knutti, and P. Friedlingstein, Proc. Natl. Acad. Sci. USA 106, 1704. (2009).

    Google Scholar 

  25. D.C. Dube, M. Fu, D. Agrawal, R. Roy, and A. Santra, Mater. Res. Innov. 12, 119. (2008).

    Google Scholar 

  26. J. Cheng, D. Agrawal, Y. Zhang, R. Roy, and A.K. Santra, J. Alloys Compd. 491, 517. (2010).

    Google Scholar 

  27. E. Williams, Technol. Forecast. Soc. Change 70, 341. (2003).

    Google Scholar 

  28. S. Mukherjee, and P.B. Ghosh, Int. J. Low-Carbon Technol. 9, 52. (2014).

    Google Scholar 

  29. Y. Akira, and Y. Oshima, J. Supercrit. Fluids 75, 1. (2013).

    Google Scholar 

  30. K. Momoki, and J.W. Yan, Appl. Phys. Express 13, 026505. (2020).

    Google Scholar 

  31. T.C. Yang, F.C. Chang, C.Y. Peng, H.P. Wang, and Y.L. Wei, Environ. Technol. 36, 2987. (2015).

    Google Scholar 

  32. W.G. Jung, S.T. Hossain, F.T. Johra, J.H. Kim, and Y.C. Chang, J. Iron Steel Res. Int. 26, 806. (2019).

    Google Scholar 

  33. M.I. Davidzon, Int. J. Heat Mass Transf. 55, 5397. (2012).

    Google Scholar 

  34. K.C. Cheng, Appl. Mech. Rev. 62, 1. (2009).

    Google Scholar 

  35. J.J. Lee, C.I. Lin, and H.K. Chen, Metall. Mater. Trans. B 32, 1033. (2001).

    Google Scholar 

  36. B. Janković, S. Stopić, A. Güven, and B. Friedrich, J. Magn. Magn. Mater. 358–359, 105. (2014).

    Google Scholar 

  37. A. Amini, K. Ohno, T. Maeda, and K. Kunitomo, Sci. Rep. 8, 15023. (2018).

    Google Scholar 

  38. M. Hotta, M. Hayashi, and K. Nagata, ISIJ Int. 51, 491. (2011).

    Google Scholar 

  39. H. Sugawara, K. Kashimura, M. Hayashi, T. Matsumuro, T. Watanabe, T. Mitani, and N. Shinohara, Physica B 458, 35. (2015).

    Google Scholar 

  40. Z.W. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Sun, Metall. Mater. Trans. A 42A, 2259. (2011).

    Google Scholar 

  41. Z.Y. Liu, N.H. Loh, K.A. Khor, and S.B. Tor, Scr. Mater. 44, 1131. (2001).

    Google Scholar 

  42. W.P. Ye, Z.L. Huang, Q.X. Zhang, and Q.Y. Zhang, J. Wuhan Univ. Technol. Mater. Sci. 23, 528. (2008).

    Google Scholar 

  43. M.N. Magomedov, Tech. Phys. 61, 730. (2016).

    Google Scholar 

  44. S. Polsilapa, D.R. Sadedin, and P. Wangyao, High Temp. Mater. Process. 30, 587. (2011).

    Google Scholar 

  45. J. Fukushima, K. Kashimura, S. Takayama, and M. Sato, Chem. Lett. 41, 39. (2012).

    Google Scholar 

  46. J. Fukushima, K. Kashimura, S. Takayama, M. Sato, S. Sano, Y. Hayashi, and H. Takizawa, Mater. Lett. 91, 252. (2013).

    Google Scholar 

  47. J. Fukushima, K. Kashimura, and M. Sato, Mater. Chem. Phys. 131, 178. (2011).

    Google Scholar 

  48. M.A. Herrero, J.M. Kremsner, and C.O. Kappe, J. Org. Chem. 73, 36. (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoki Kosai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 302 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mizuno, N., Kosai, S. & Yamasue, E. Microwave-Based Approach to Recovering Zinc from Electric Arc Furnace Dust Using Silicon Powder as a Non-carbonaceous Reductant. JOM 73, 1828–1835 (2021). https://doi.org/10.1007/s11837-021-04677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04677-z