Skip to main content
Log in

Microwave-Based Approach to Recovering Zinc from Electric Arc Furnace Dust Using Silicon Powder as a Non-carbonaceous Reductant

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the recycling of zinc from electric arc furnace dust using microwave-based furnaces, the use of graphite powder as a reductant results in significant greenhouse gas emissions. In this study, graphite was replaced by a non-carbonaceous reductant in the form of silicon powder. The sample is heated in a microwave-based furnace under 7.5 kW maximum power irradiation at 2.45 GHz. The results clearly indicate that the reaction proceeded between zinc ferrite and silicon powder. The maximum removal rate of zinc obtained was 80% in cases where more than 10 times the stoichiometric amount of silicon powder was used for a heating time of more than 20 min. The apparent activation energy of microwave-based heating was 115.39 kJ/mol lower than that when heating with a conventional furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.E. Graedel, D. van Beers, M. Bertram, K. Fuse, R.B. Gordon, A. Gritsinin, E.M. Harper, A. Kapur, R.J. Klee, R. Lifset, L. Memon, and S. Spatari, J. Ind. Ecol. 9, 67. (2005).

    Article  Google Scholar 

  2. P.B. Queneau, R. Leiby, and R. Robinson, World Metall. Erzmet. 68, 149. (2015).

    Google Scholar 

  3. X. Lin, Z. Peng, J. Yan, Z. Li, J.Y. Hwang, Y. Zhang, G. Li, and T. Jiang, J. Clean. Prod. 149, 1079. (2017).

    Article  Google Scholar 

  4. C. Pichler, and J. Antrekowitsch, JOM 69, 999. (2017).

    Article  Google Scholar 

  5. P.J.W.K. de Buzin, N.C. Heck, and A.C.F. Vilela, J. Mater. Res. Technol. 6, 194. (2017).

    Article  Google Scholar 

  6. M.C. da Silva, A.M. Bernardes, C.P. Bergmann, J.A.S. Tenório, and D.C.R. Espinosa, Ironmak. Steelmak. 35, 315. (2008).

    Article  Google Scholar 

  7. A.J.B. Dutra, P.R.P. Paiva, and L.M. Tavares, Miner. Eng. 19, 478. (2006).

    Article  Google Scholar 

  8. J. Antrekowitsch, and H. Antrekowitsch, JOM 53, 26. (2001).

    Article  Google Scholar 

  9. M. Zhang, J. Li, Q. Zeng, and Q. Mou, Appl. Sci. 9, 1. (2019).

    Google Scholar 

  10. J. Veres, M. Lovas, S. Jakabsky, V. Sepelak, and S. Hredzak, Hydrometallurgy 129–130, 67. (2012).

    Article  Google Scholar 

  11. P.K. Hazaveh, S. Karimi, F. Rashchi, and S. Sheibani, Ecotoxicol. Environ. Saf. 202, 1. (2020).

    Google Scholar 

  12. F. Kukurugya, T. Vindt, and T. Havlík, Hydrometallurgy 154, 20. (2015).

    Article  Google Scholar 

  13. D. Zhang, H. Ling, T. Yang, W. Liu, and L. Chen, J. Clean. Prod. 224, 536. (2019).

    Article  Google Scholar 

  14. J. Aromaa, A. Kekki, A. Stefanova, H. Makkonen, and O. Forsén, Miner. Process. Extr Metall. 125, 242. (2016).

    Article  Google Scholar 

  15. M. Omran, T. Fabritius, and E.P. Heikkinen, J. Sustain. Metall. 5, 331. (2019).

    Article  Google Scholar 

  16. X. Sun, J.Y. Hwang, and X. Huang, JOM 60, 35. (2008).

    Article  Google Scholar 

  17. D.E. Khaled, N. Novas, J.A. Gazquez, and F. Manzano-Agugliaro, Renew. Sustain. Energy Rev. 82, 2880. (2018).

    Article  Google Scholar 

  18. Q. Ye, Z. Peng, G. Li, J. Lee, Y. Liu, M. Liu, L. Wang, M. Rao, Y. Zhang, T. Jiang, and A.C.S. Sustain, Chem. Eng. 7, 9515. (2019).

    Google Scholar 

  19. E. Kim, T. Kim, J. Lee, Y. Kang, and K. Morita, Ironmak. Steelmak. 39, 45. (2012).

    Article  Google Scholar 

  20. R.E. Newnham, S.J. Jang, M. Xu, and F. Jones, Ceram. Trans. 21, 51. (1991).

    Google Scholar 

  21. Z. Peng, and J.Y. Hwang, Int. Mater. Rev. 60, 30. (2015).

    Article  Google Scholar 

  22. A.K. Dasgupta, J. Mazumder, and P. Li, J. Phys. Appl. Phys. 102, 053108. (2007).

    Article  Google Scholar 

  23. K.E. Haque, Int. J. Miner. Process. 57, 1. (1999).

    Article  Google Scholar 

  24. S. Solomon, G.K. Plattner, R. Knutti, and P. Friedlingstein, Proc. Natl. Acad. Sci. USA 106, 1704. (2009).

    Article  Google Scholar 

  25. D.C. Dube, M. Fu, D. Agrawal, R. Roy, and A. Santra, Mater. Res. Innov. 12, 119. (2008).

    Article  Google Scholar 

  26. J. Cheng, D. Agrawal, Y. Zhang, R. Roy, and A.K. Santra, J. Alloys Compd. 491, 517. (2010).

    Article  Google Scholar 

  27. E. Williams, Technol. Forecast. Soc. Change 70, 341. (2003).

    Article  Google Scholar 

  28. S. Mukherjee, and P.B. Ghosh, Int. J. Low-Carbon Technol. 9, 52. (2014).

    Article  Google Scholar 

  29. Y. Akira, and Y. Oshima, J. Supercrit. Fluids 75, 1. (2013).

    Article  Google Scholar 

  30. K. Momoki, and J.W. Yan, Appl. Phys. Express 13, 026505. (2020).

    Article  Google Scholar 

  31. T.C. Yang, F.C. Chang, C.Y. Peng, H.P. Wang, and Y.L. Wei, Environ. Technol. 36, 2987. (2015).

    Article  Google Scholar 

  32. W.G. Jung, S.T. Hossain, F.T. Johra, J.H. Kim, and Y.C. Chang, J. Iron Steel Res. Int. 26, 806. (2019).

    Article  Google Scholar 

  33. M.I. Davidzon, Int. J. Heat Mass Transf. 55, 5397. (2012).

    Article  Google Scholar 

  34. K.C. Cheng, Appl. Mech. Rev. 62, 1. (2009).

    Article  Google Scholar 

  35. J.J. Lee, C.I. Lin, and H.K. Chen, Metall. Mater. Trans. B 32, 1033. (2001).

    Article  Google Scholar 

  36. B. Janković, S. Stopić, A. Güven, and B. Friedrich, J. Magn. Magn. Mater. 358–359, 105. (2014).

    Article  Google Scholar 

  37. A. Amini, K. Ohno, T. Maeda, and K. Kunitomo, Sci. Rep. 8, 15023. (2018).

    Article  Google Scholar 

  38. M. Hotta, M. Hayashi, and K. Nagata, ISIJ Int. 51, 491. (2011).

    Article  Google Scholar 

  39. H. Sugawara, K. Kashimura, M. Hayashi, T. Matsumuro, T. Watanabe, T. Mitani, and N. Shinohara, Physica B 458, 35. (2015).

    Article  Google Scholar 

  40. Z.W. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Sun, Metall. Mater. Trans. A 42A, 2259. (2011).

    Article  Google Scholar 

  41. Z.Y. Liu, N.H. Loh, K.A. Khor, and S.B. Tor, Scr. Mater. 44, 1131. (2001).

    Article  Google Scholar 

  42. W.P. Ye, Z.L. Huang, Q.X. Zhang, and Q.Y. Zhang, J. Wuhan Univ. Technol. Mater. Sci. 23, 528. (2008).

    Article  Google Scholar 

  43. M.N. Magomedov, Tech. Phys. 61, 730. (2016).

    Article  Google Scholar 

  44. S. Polsilapa, D.R. Sadedin, and P. Wangyao, High Temp. Mater. Process. 30, 587. (2011).

    Article  Google Scholar 

  45. J. Fukushima, K. Kashimura, S. Takayama, and M. Sato, Chem. Lett. 41, 39. (2012).

    Article  Google Scholar 

  46. J. Fukushima, K. Kashimura, S. Takayama, M. Sato, S. Sano, Y. Hayashi, and H. Takizawa, Mater. Lett. 91, 252. (2013).

    Article  Google Scholar 

  47. J. Fukushima, K. Kashimura, and M. Sato, Mater. Chem. Phys. 131, 178. (2011).

    Article  Google Scholar 

  48. M.A. Herrero, J.M. Kremsner, and C.O. Kappe, J. Org. Chem. 73, 36. (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoki Kosai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuno, N., Kosai, S. & Yamasue, E. Microwave-Based Approach to Recovering Zinc from Electric Arc Furnace Dust Using Silicon Powder as a Non-carbonaceous Reductant. JOM 73, 1828–1835 (2021). https://doi.org/10.1007/s11837-021-04677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04677-z

Navigation