Skip to main content
Log in

Separation and Extraction of Scandium from Titanium Dioxide Waste Acid

  • Adaptive Metallurgical Processing Technologies for Strategic Metal Recycling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The solvent extraction method for extracting scandium from titanium dioxide waste acid is usually accompanied by co-extraction of titanium. In this paper, the scandium and titanium separation of the Sc(III) and Ti(IV)-loaded organic phase and the recovery of scandium were studied. A new scrubbing agent containing Na3Cit and H2O2 was used to selectively remove titanium from the Sc(III) and Ti(IV)-loaded organic phase. Results indicated that the removal ratio of titanium reached 100% with an nNa3Cit/nTi ratio of 1.5/1 and an nH2O2/nTi ratio of 3/1 at an O/A ratio of 1/1 and 25°C for 15 min through a three-stage cross-flow scrubbing. The co-removal ratio of scandium was less than 0.06%. The Fourier-transform infrared spectra results showed that titanium could be completely removed from the Sc(III) and Ti(IV)-loaded organic phase. Compared with the traditional scrubbing agent containing H2SO4 and H2O2, the new scrubbing agent has the characteristics of high efficiency and strong selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.N. Nghiem, I. Atsushi, S. Etsuro, and N. Takashi, Hydrometallurgy 165, 51. (2016).

    Article  Google Scholar 

  2. W.W. Wang, Y. Pranolo, and C.Y. Cheng, Sep. Purif. Technol. 108, 96. (2013).

    Article  Google Scholar 

  3. V.A. Shalomeev, N.A. Lysenko, E.I. Tsivirko, V.V. Lukinov, and V.V. Klochikhin, Met. Sci. Heat Treat. 50, 34. (2008).

    Article  Google Scholar 

  4. L.C. Zhang, Q.L. Chen, C. Kang, X. Ma, and Z.L. Yang, J. Rare Earth 34, 717. (2016).

    Article  Google Scholar 

  5. Z. Chen, and Z. Chen, Min. Metall. Eng. 10, 54. (1990).

    Google Scholar 

  6. W.W. Wang, Y. Pranolo, and C.Y. Cheng, Hydrometallurgy 108, 100. (2011).

    Article  Google Scholar 

  7. J. Zhou, Q. Yu, Y. Huang, J.J. Meng, Y.D. Chen, S.Y. Ning, X.P. Wang, Y.Z. Wei, X.B. Yin, and J. Liang, Hydrometallurgy 195, 105398. (2020).

    Article  Google Scholar 

  8. J. Yang, and Z.H. Zhang, Metal Mine 12, 52. ((in Chinese)) (1999).

    Google Scholar 

  9. G. Li, Z. Li, and E. Asselin, Ind. Eng. Chem. Res. 52, 3481. (2013).

    Article  Google Scholar 

  10. S.Q. Xu, and S.Q. Li, Hydrometallurgy 42, 337. (1996).

    Article  Google Scholar 

  11. Q. Ye, G.G. Li, B. Deng, J. Luo, M.J. Rao, Z.W. Peng, Y.B. Zhang, and T. Jiang, Sep. Purif. Technol. 209, 175. (2019).

    Article  Google Scholar 

  12. T.V. Molchanova, I.D. Akimova, and A.V. Tatarnikov, Russ. Metall. 7, 674. (2019).

    Article  Google Scholar 

  13. Q. Yu, S.Y. Ning, W. Zhang, X.P. Wang, and Y.Z. Wei, Hydrometallurgy 181, 74. (2018).

    Article  Google Scholar 

  14. S.I. Stepanov, K. P’ei, A.V. Boyarintsev, V.G. Giganov, M.M. Aung, and A.M. Chekmarev, Theor. Found. Chem. Eng. 51, 846. (2017).

    Article  Google Scholar 

  15. H.B. Qiu, M.L. Wang, Y.M. Xie, J.F. Song, T. Huang, X.M. Li, and T. He, Process. Saf. Environ. Prot. 121, 118. (2019).

    Article  Google Scholar 

  16. K.H. Chen, Y. He, C. Srinivasakannan, S.W. Li, S.H. Yin, J.H. Peng, S.H. Guo, and L.B. Zhang, Chem. Eng. J. 356, 453. (2019).

    Article  Google Scholar 

  17. X.B. Zhu, W. Li, S. Tang, M.J. Zeng, P.Y. Bai, and L.J. Chen, Chemosphere 175, 365. (2017).

    Article  Google Scholar 

  18. C. Wang, and D.Q. Li, Solvent Extr. Ion Exch. 13, 503. (1995).

    Article  Google Scholar 

  19. H. Li, Z.F. Tong, Z.C. Chen, and A.Z. Mao, Inorg. Chem. Ind. 38, 51. ((in Chinese)) (2006).

    Google Scholar 

  20. Y.H. Li, Q.G. Li, G.Q. Zhang, L. Zeng, Z.Y. Cao, W.J. Guan, and L.P. Wang, Hydrometallurgy 178, 1. (2018).

    Article  Google Scholar 

  21. X.J. Deng, Metal. Anal. 5, 44. ((in Chinese)) (1985).

    Google Scholar 

  22. F.D. Yuan, Q.J. Ya, M.H. Qi, and H.Z. Zhao, Polyhedron 26, 1561. (2007).

    Article  Google Scholar 

  23. J.M. Collins, U. Ritika, C.D. Incarvito, and A.M. Valentine, Inorg. Chem. 44, 3431. (2005).

    Article  Google Scholar 

  24. E. Bekassy-Molnar, J. Marki, and J.G. Majeed, Chem. Eng. Process. 44, 1039. (2005).

    Article  Google Scholar 

  25. R.V. Bravo, R.F. Camacho, V.M. Moya, and R.M. Aguado, Chem. Eng. Sci. 48, 2399. (1993).

    Article  Google Scholar 

  26. X.P. Jiang, Y.Z. Liu, and M.D. Gu, Chin. J. Chem. Eng. 19, 687. (2011).

    Article  Google Scholar 

  27. A. Cheraghi, M.S. Ardakani, E.K. Alamdari, D.H. Fatmesari, D. Darvishi, and S.K. Sadrnezhaad, Int. J. Miner. Process. 138, 49. (2015).

    Article  Google Scholar 

  28. Y. Zhang, T.A. Zhang, D. Dreisinger, G.Z. Lv, G.Q. Zhang, W.G. Zhang, and Y. Liu, Can. Metall. Q. 56, 281. (2017).

    Article  Google Scholar 

  29. F.A. Morsy, S. El-Sherbiny, M. Samir, and O.A. Fouad, J. Coat. Technol. Res. 13, 307. (2016).

    Article  Google Scholar 

  30. M.M. Milanova, M.G. Arnaudov, M.M. Getsova, and D.S. Todorovsky, J. Alloys Compd. 264, 95. (1998).

    Article  Google Scholar 

  31. L.J. Zhang, X.J. Chang, Y.H. Zhai, Q. He, X.P. Huang, Z. Hu, and N. Jiang, Anal. Chim. Acta 629, 84. (2008).

    Article  Google Scholar 

  32. W.G. Zhang, T.A. Zhang, G.Z. Lv, W.H. Zhou, X.J. Cao, and H.Y. Zhu, JOM 70, 2837. (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos.51874078), and the Fundamental Research Funds for the Central Universities (No. N182504018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-An Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, TA., Lv, G. et al. Separation and Extraction of Scandium from Titanium Dioxide Waste Acid. JOM 73, 1301–1309 (2021). https://doi.org/10.1007/s11837-021-04629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04629-7

Navigation