Skip to main content
Log in

Microstructural and Texture Evolution of Hot-Rolled TA32 Alloy and Its Effect on Tensile Properties

  • Developments in the Production of Magnesium Alloy Flat Products
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A challenge for the research and industrial community is to develop lightweight wrought Mg-based alloys that exhibit high strength and good ductility. To address this challenge, Mg-3Sn-2Al (TA32) alloy was produced by the squeeze casting process followed by hot rolling (HR). To improve its ductility, the hot-rolled alloy was annealed (HRA). HR and HRA samples were subjected to microstructural, composition, textural, and mechanical property analysis. The HR sheet exhibited high strength with 0.2% proof stress (PS) of 274 MPa and ultimate tensile strength (UTS) of 390 MPa, as well as reasonable ductility (12%) along the rolling direction, one of the highest values for Mg alloys. HRA sheet showed a moderate reduction in strength with a 0.2% PS of 250 MPa and UTS of 365 MPa, but an improvement in ductility (19%). The excellent properties of this alloy can be attributed to the synergistic effects of grain refinement, solid-solution strengthening by Al and Sn atoms, and uniform distribution of fine Mg2Sn particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Aghion, B. Bronfin, and D. Eliezer, J. Mater. Process. Technol. 117, 381. https://doi.org/10.1016/S0924-0136(01)00779-8 (2001).

    Article  Google Scholar 

  2. B. Mordike, and T. Ebert, B. Mordike, and T. Ebert, Mater. Sci. Eng. A 302, 37. https://doi.org/10.1016/S0921-5093(00)01351-4.N (2001).

    Article  Google Scholar 

  3. K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-Ishi, Scr. Mater. 63, 710. https://doi.org/10.1016/j.scriptamat.2010.01.038 (2010).

    Article  Google Scholar 

  4. C. Bettles and M. Barnett, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, 2012. ISBN 978-1-84569-968-0

  5. I. Polmear, Light Alloys: Tradit. Alloys Nanocryst. https://doi.org/10.1017/S000192400008670X (2005).

    Article  Google Scholar 

  6. L. Zheng, H. Nie, W. Zhang, W. Liang, and Y. Wang, Mater. Sci. Eng. A 722, 58. https://doi.org/10.1016/j.msea.2017.12.048 (2018).

    Article  Google Scholar 

  7. L. Gao, R.S. Chen, and E.H. Han, J. Alloys Compd. 481, 379. https://doi.org/10.1016/j.jallcom.2008.04.049 (2009).

    Article  Google Scholar 

  8. H.K. Lim, D.H. Kim, J.Y. Lee, W.T. Kim, and D.H. Kim, J. Alloys Compd. 468, 308. https://doi.org/10.1016/j.jallcom.2007.12.098 (2009).

    Article  Google Scholar 

  9. Q. Peng, X. Hou, L. Wang, Y. Wu, Z. Cao, and L. Wang, Mater. Des. 30, 292. https://doi.org/10.1016/j.matdes.2008.04.069 (2009).

    Article  Google Scholar 

  10. N.E. Mahallawy, A.A. Diaa, M. Akdesir, and H. Palkowski, Mater. Sci. Eng. A 680, 47. https://doi.org/10.1016/j.msea.2016.10.075 (2017).

    Article  Google Scholar 

  11. D. Luo, N. Xia, H.-Y. Wang, L. Chen, J.-G. Wang, and Q.-C. Jiang, Mater. Sci. Technol. 30, 1305. https://doi.org/10.1179/1743284714Y.0000000565 (2014).

    Article  Google Scholar 

  12. F. Qi, D. Zhang, X. Zhang, and X. Xu, J. Alloys Compd. 585, 656. https://doi.org/10.1016/J.JALLCOM.2013.09.156 (2014).

    Article  Google Scholar 

  13. J. Chen, Z. Chen, H. Yan, F. Zhang, and K. Liao, J. Alloys Compd. 461, 209. https://doi.org/10.1016/j.jallcom.2007.07.066 (2008).

    Article  Google Scholar 

  14. Z.-Z. Shi, J.-Y. Xu, J. Yu, and X.-F. Liu, Mater. Sci. Eng. A 712, 65. https://doi.org/10.1016/j.msea.2017.11.094 (2018).

    Article  Google Scholar 

  15. W.L. Cheng, S.S. Park, B.S. You, and B.H. Koo, Mater. Sci. Eng. A 527, 4650. https://doi.org/10.1016/j.msea.2010.03.031 (2010).

    Article  Google Scholar 

  16. Y. Chen, L. Jin, Y. Song, H. Liu, and R. Ye, Mater. Sci. Eng. A 612, 96. https://doi.org/10.1016/j.msea.2014.06.022 (2014).

    Article  Google Scholar 

  17. D.H. Kim, Y.K. Kim, S.W. Sohn, D.H. Kim, and W.T. Kim, J. Alloys Compd. 549, 46. https://doi.org/10.1016/j.jallcom.2012.09.050 (2013).

    Article  Google Scholar 

  18. ASM International, ASM Handbook, Volume 3, Alloy Phase Diagrams, vol. 7, 2004. https://doi.org/10.1007/BF02869318

  19. W.N. Tang, S.S. Park, and B.S. You, Mater. Des. 32, 3537. https://doi.org/10.1016/J.MATDES.2011.02.012 (2011).

    Article  Google Scholar 

  20. Y.N. Wang, and J.C. Huang, Mater. Chem. Phys. 81, 11. (2003).

    Article  Google Scholar 

  21. N. Koundinya, L. Raman, N. Chawake, and R.S. Kottada, Materialia 3, 274. https://doi.org/10.1016/j.mtla.2018.09.001 (2018).

    Article  Google Scholar 

  22. J. Koike, Metall. Mater. Trans. A 36A, 1689. https://doi.org/10.1007/s11661-005-0032-4 (2005).

    Article  Google Scholar 

  23. J. Jiang, G. Bi, G. Wang, Q. Jiang, J. Lian, and Z. Jiang, J. Magn. Alloys 2, 116. https://doi.org/10.1016/J.JMA.2014.05.004 (2014).

    Article  Google Scholar 

  24. H.-Y. Wu, and F.-Z. Lin, Mater. Sci. Eng. A 527, 1194. https://doi.org/10.1016/J.MSEA.2009.09.049 (2010).

    Article  Google Scholar 

  25. C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, and X. Liu, Mater. Sci. Eng. A 713, 244–252. https://doi.org/10.1016/J.MSEA.2017.12.074 (2018).

    Article  Google Scholar 

  26. U.F. Kocks, and H. Mecking, Prog. Mater. Sci. https://doi.org/10.1016/S0079-6425(02)00003-8 (2003).

    Article  Google Scholar 

  27. Y. Zou, L. Zhang, Y. Li, H. Wang, J. Liu, P.K. Liaw, H. Bei, and Z. Zhang, J. Alloys Compd. 735, 2625. https://doi.org/10.1016/j.jallcom.2017.12.025 (2018).

    Article  Google Scholar 

  28. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Scr. Mater. 57, 1004. https://doi.org/10.1016/j.scriptamat.2007.08.001 (2007).

    Article  Google Scholar 

  29. H.Y. Wu, J.C. Yan, H.H. Tsai, C.H. Chiu, G.Z. Zhou, and C.F. Lin, Mater. Sci. Eng. A 527, 7197. https://doi.org/10.1016/j.msea.2010.08.019 (2010).

    Article  Google Scholar 

  30. C.H. Cáceres, and A.H. Blake, Mater. Sci. Eng. A 462, 193. https://doi.org/10.1016/j.msea.2005.12.113 (2007).

    Article  Google Scholar 

  31. A.D. Rollett, and U.F. Kocks, Solid State Phenom. 35–36, 1. https://doi.org/10.4028/www.scientific.net/SSP.35-36.1 (1993).

    Article  Google Scholar 

  32. E.I. Poliak, and J.J. Jonas, Acta Mater. 44, 127. https://doi.org/10.1016/1359-6454(95)00146-7 (1996).

    Article  Google Scholar 

  33. W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, J. Magn. Alloys 2, 299–304. https://doi.org/10.1016/j.jma.2014.11.003 (2014).

    Article  Google Scholar 

  34. G. Hu, D. Zhang, T. Tang, X. Shen, L. Jiang, J. Xu, and F. Pan, Mater. Sci. Eng. A 634, 5. https://doi.org/10.1016/j.msea.2015.03.040 (2015).

    Article  Google Scholar 

  35. L. Gao, R.S. Chen, and E.H. Han, J. Alloys Compd. 472, 234. https://doi.org/10.1016/j.jallcom.2009.02.131 (2009).

    Article  Google Scholar 

  36. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101. https://doi.org/10.1016/J.ACTAMAT.2006.11.013 (2007).

    Article  Google Scholar 

  37. Y. Chen, H. Liu, G.T. Gao, D. Fang, Y. Wang, L. Jin, and Y. Jiang, Key Eng. Mater. 727, 196 https://doi.org/10.4028/www.scientific.net/KEM.727.196 (2017).

    Article  Google Scholar 

  38. N.E. Mahallawy, A.A. Diaa, M. Akdesir, and H. Palkowski, Materwiss. Werksttech. 47, 37. https://doi.org/10.1002/mawe.201500468 (2016).

    Article  Google Scholar 

  39. Y.K. Kim, S.W. Sohn, D.H. Kim, W.T. Kim, and D.H. Kim, J. Alloys Compd. 549, 46. https://doi.org/10.1016/j.jallcom.2012.09.050 (2013).

    Article  Google Scholar 

  40. L. Mao, C. Liu, Y. Gao, X. Han, S. Jiang, and Z. Chen, Mater. Sci. Eng. A 701, 7. https://doi.org/10.1016/j.msea.2017.06.008 (2017).

    Article  Google Scholar 

  41. F.-S. Pan, J. Zhang, J.-F. Wang, M.-B. Yang, H. En-Hou, and C. Rong-Shi, Trans. Nonferrous Met. Soc. China 20, 1249. https://doi.org/10.1016/S1003-6326(09)60287-9 (2010).

    Article  Google Scholar 

  42. G.H. Su, L. Zhang, L.R. Cheng, Y.B. Liu, and Z.Y. Cao, Trans. Nonferrous Met. Soc. China Engl. Ed. 20, 383. https://doi.org/10.1016/S1003-6326(09)60150-3 (2010).

    Article  Google Scholar 

  43. J. Wei, J. Chen, H. Yan, B. Su, and X. Pan, J. Alloys Compd. 548, 52. https://doi.org/10.1016/J.JALLCOM.2012.08.102 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged Prof. Satyam Suwas, Chairperson of the Department of Materials Engineering, Indian Institute of Science (IISc), Bangalore, India for allowing us to use characterization facilities available in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra S. Perugu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perugu, C.S., Verma, K.K., Madhu, H.C. et al. Microstructural and Texture Evolution of Hot-Rolled TA32 Alloy and Its Effect on Tensile Properties. JOM 73, 1428–1439 (2021). https://doi.org/10.1007/s11837-021-04615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04615-z

Navigation