Skip to main content
Log in

Toward Development of Strong and Formable Magnesium Alloy Sheets with Bake-Hardenability

  • Developments in the Production of Magnesium Alloy Flat Products
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To enable broader applications of magnesium alloy sheets, one requirement is to achieve comparable strength-formability balance with that of aluminum-based alloys. Based on the review of recent studies on precipitation hardening of microalloyed magnesium alloys, we propose the usage of age-hardenable alloys to overcome the strength-formability trade-off in magnesium alloy sheets. Precipitation hardening has not been actively used in commercial wrought magnesium alloys because of their poor age-hardening responses. However, recent studies have shown appropriate selection of microalloying elements leads to a substantial enhancement of the kinetics of age-hardening. We found Mg-Ca-X (X = Al, Zn) dilute alloys show promising age-hardening characteristics for bake-hardenable alloy sheets that may be used as a substitute for 6xxx aluminum alloy sheet for weight reduction. Such alloys show excellent room temperature stretch formability, and substantial strengthening to ~240 MPa can be achieved by a short-term aging at low temperatures: 170°C for 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The chemical composition is described in wt.% unless otherwise noted.

References

  1. R. K. Pachauri and L. A. Meyer, Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. R.K. Pachauri and L.A. Meyer (Geneva, Switzerland: IPCC, 2014), pp. 1–151.

  2. Greenhouse Gas Inventory Office of Japan and Ministry of the Environment, Japan, National Greenhouse Gas Inventory Report of JAPAN 2020, ed. Greenhouse Gas Inventory Office of Japan and Ministry of the Environment, Japan, Center for Global Environmental Research, National Institute for Environmental Studies (Tsukuba, Japan: NIES 2020).

  3. G. Fontaras, N.G. Zacharof, and B. Ciuffo, Prog. Energy Combust. Sci. 60, 97. (2017).

    Article  Google Scholar 

  4. H. E. Friedrich and B. L. Mordike, MagnesiumTechnology: Metallurgy, Design Data, Applications, ed. H.E. Friedrich and B.L. Mordike (Berlin Heidelberg, Germany: Springer-Verlag, 2006), pp. 1–677.

  5. B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Scr. Mater. 84–85, 1. (2014).

    Article  Google Scholar 

  6. W.J. Joost, and P.E. Krajewski, Scr. Mater. 128, 107. (2017).

    Article  Google Scholar 

  7. D. Klaumünzer, J. V. Hernandez, S. Yi, D. Letzig, S. Kim, J. J. Kim, M. H. Seo, and K. Ahn, Magnesium Technology 2019, ed. V. V Joshi, J. B. Jordon, D. Orlov, and N. R. Neelameggham (Gewerbestrasse, Switzerland: Springer International Publishing AG, 2019), pp. 15–20.

  8. S.R. Agnew, S.R. Agnew, JOM 56, 20. (2004).

    Article  Google Scholar 

  9. Y. Muraoka, and H. Miyaoka, J. Mater. Process. Tech. 38, 655. (1993).

    Article  Google Scholar 

  10. G.S. Cole, and A.M. Sherman, Mater. Charact. 35, 3. (1995).

    Article  Google Scholar 

  11. G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd, Mater. Charact. 35, 23. (1995).

    Article  Google Scholar 

  12. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A 280, 37. (2000).

    Article  Google Scholar 

  13. J. Hirsch, J. Hirsch, Mater. Sci. Forum 242, 33. (1997).

    Article  Google Scholar 

  14. J. Hirch, J. Hirch, Trans. Nonferrous Met. Soc. China 24, 1995. (2014).

    Article  Google Scholar 

  15. P.G. Partridge, P.G. Partridge, Metall. Rev. 12, 169. (1967).

    Article  Google Scholar 

  16. J.W. Christian, and S. Mahajan, Prog. Mater. Sci. 39, 1. (1995).

    Article  Google Scholar 

  17. A. Chapuis, and J.H. Driver, Acta Mater. 59, 1986. (2011).

    Article  Google Scholar 

  18. Y. Chino, J.S. Lee, K. Sassa, A. Kamiya, and M. Mabuchi, Mater. Lett. 60, 173. (2006).

    Article  Google Scholar 

  19. X. Huang, K. Suzuki, and N. Saito, Scr. Mater. 60, 651. (2009).

    Article  Google Scholar 

  20. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Mater. Sci. Eng. A 633, 144. (2015).

    Article  Google Scholar 

  21. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, J. Alloys Compd. 509, 7579. (2011).

    Article  Google Scholar 

  22. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, J. Mater. Sci. 47, 4561. (2012).

    Article  Google Scholar 

  23. S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Acta Mater. 58, 592. (2010).

    Article  Google Scholar 

  24. L. Mackenzie, and M. Pekguleryuz, Scr. Mater. 59, 665. (2008).

    Article  Google Scholar 

  25. Y. Chino, X. Huang, K. Suzuki, and M. Mabuchi, Mater. Trans. 51, 818. (2010).

    Article  Google Scholar 

  26. Y. Chino, K. Sassa, X. Huang, K. Suzuki, and M. Mabuchi, J. Japan Inst. Met. 75, 35. (2011).

    Article  Google Scholar 

  27. D. W. Kim, B. C. Suh, M. S. Shim, J. H. Bae, D. H. Kim, and N. J. Kim, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 44, 2950 (2013).

  28. S.J. Park, H.C. Jung, and K.S. Shin, Mater. Sci. Eng. A 679, 329. (2017).

    Article  Google Scholar 

  29. Y. Chino, H. Iwasaki, and M. Mabuchi, Mater. Sci. Eng. A 466, 90. (2007).

    Article  Google Scholar 

  30. Y. Chino, K. Sassa, and M. Mabuchi, Mater. Trans. 49, 1710. (2008).

    Article  Google Scholar 

  31. X. Huang, K. Suzuki, and N. Saito, Scr. Mater. 61, 445. (2009).

    Article  Google Scholar 

  32. D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim, and N.J. Kim, Scr. Mater. 61, 768. (2009).

    Article  Google Scholar 

  33. Y. Chino, and M. Mabuchi, Scr. Mater. 60, 447. (2009).

    Article  Google Scholar 

  34. X. Huang, K. Suzuki, and Y. Chino, Scr. Mater. 63, 395. (2010).

    Article  Google Scholar 

  35. K. Suzuki, Y. Chino, X. Huang, M. Yuasa, and M. Mabuchi, Mater. Trans. 54, 392. (2013).

    Article  Google Scholar 

  36. T. Zhou, Z. Yang, D. Hu, T. Feng, M. Yang, and X. Zhai, J. Alloys Compd. 650, 436. (2015).

    Article  Google Scholar 

  37. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, J. Alloys Compd. 632, 94. (2015).

    Article  Google Scholar 

  38. Y. Chino, K. Sassa, and M. Mabuchi, Mater. Sci. Eng. A 513–514, 394. (2009).

    Article  Google Scholar 

  39. Y. Chino, T. Ueda, Y. Otomatsu, K. Sassa, X. Huang, K. Suzuki, and M. Mabuchi, Mater. Trans. 52, 1477. (2011).

    Article  Google Scholar 

  40. L. Gao, H. Yan, J. Luo, A.A. Luo, and R. Chen, J. Magnes. Alloy. 1, 283. (2013).

    Article  Google Scholar 

  41. C.L. Mendis, J.H. Bae, N.J. Kim, and K. Hono, Scr. Mater. 64, 335. (2011).

    Article  Google Scholar 

  42. T. Bhattacharjee, B.-C. Suh, T.T. Sasaki, T. Ohkubo, N.J. Kim, and K. Hono, Mater. Sci. Eng. A 609, 154. (2014).

    Article  Google Scholar 

  43. K. Suzuki, Y. Chino, X. Huang, M. Yuasa, and M. Mabuchi, Mater. Trans. 56, 1096. (2015).

    Article  Google Scholar 

  44. Y. Chino, M. Kado, and M. Mabuchi, Mater. Sci. Eng. A 494, 343. (2008).

    Article  Google Scholar 

  45. D. Wu, R.S. Chen, and E.H. Han, J. Alloys Compd. 509, 2856. (2011).

    Article  Google Scholar 

  46. J. R. Davis, and Davis & Associates, ASM Specialty Handbook: Magnesim and Magnesium Alloys, ed. J. R. Davis, and Davis & Associates (Materials Park, Ohio, U.S.A.: ASM International, 1999), pp.1–784.

  47. J. Clark, J. Clark, Acta Mater. 16, 141. (1968).

    Article  Google Scholar 

  48. T.T. Sasaki, K. Oh-ishi, T. Ohkubo, and K. Hono, Scr. Mater. 55, 251. (2006).

    Article  Google Scholar 

  49. C.L. Mendis, K. Oh-ishi, and K. Hono, Scr. Mater. 57, 485. (2007).

    Article  Google Scholar 

  50. K. Oh-ishi, R. Watanabe, C.L. Mendis, and K. Hono, Mater. Sci. Eng. A 526, 177. (2009).

    Article  Google Scholar 

  51. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, and K. Hono, Scr. Mater. 68, 797. (2013).

    Article  Google Scholar 

  52. T. Bhattacharjee, C.L. Mendis, K. Oh-ishi, T. Ohkubo, and K. Hono, Mater. Sci. Eng. A 575, 231. (2013).

    Article  Google Scholar 

  53. J.F. Nie, and B.C. Muddle, Scr. Mater. 37, 1475. (1997).

    Article  Google Scholar 

  54. J. Oh, T. Ohkubo, T. Mukai, and K. Hono, Scr. Mater. 53, 675. (2005).

    Article  Google Scholar 

  55. J. Jayaraj, C.L. Mendis, T. Ohkubo, and K. Hono, Scr. Mater. 63, 831. (2010).

    Article  Google Scholar 

  56. M. M. Abedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ed. M.M. Abedesian and H. Baker (Materials Park, Ohio, U.S.A.: ASM International, 1999), pp. 1–350.

  57. T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, and K. Hono, Scr. Mater. 59, 1111. (2008).

    Article  Google Scholar 

  58. H. Somekawa, and T. Mukai, Mater. Sci. Eng. A 459, 366. (2007).

    Article  Google Scholar 

  59. S.C. Park, J.D. Lim, D. Eliezer, and K.S. Shin, Mater. Sci. Forum 419–422, 159. (2003).

    Article  Google Scholar 

  60. H. Ding, L. Liu, S. Kamado, W. Ding, and Y. Kojima, J. Alloys Compd. 456, 400. (2008).

    Article  Google Scholar 

  61. C. Mendis, K. Ohishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Acta Mater. 57, 749. (2009).

    Article  Google Scholar 

  62. S.S. Park, and B.S. You, Scr. Mater. 65, 202. (2011).

    Article  Google Scholar 

  63. J.-G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.-K. Lee, and B.S. You, Scr. Mater. 93, 8. (2014).

    Article  Google Scholar 

  64. X. Huang, A. Wu, Q. Li, and W. Huang, Mater. Sci. Eng. A 661, 233. (2016).

    Article  Google Scholar 

  65. A.E. Davis, J.D. Robson, and M. Turski, Acta Mater. 158, 1. (2018).

    Article  Google Scholar 

  66. Y. Uematsu, K. Tokaji, and M. Matsumoto, Mater. Sci. Eng. A 517, 138. (2009).

    Article  Google Scholar 

  67. S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, and Y.P. Zhu, Mater. Sci. Eng. A 433, 175. (2006).

    Article  Google Scholar 

  68. W. Yu, Z. Liu, H. He, N. Cheng, and X. Li, Mater. Sci. Eng. A 478, 101. (2008).

    Article  Google Scholar 

  69. S.S. Park, G.T. Bae, D.H. Kang, I.-H. Jung, K.S. Shin, and N.J. Kim, Scr. Mater. 57, 793. (2007).

    Article  Google Scholar 

  70. K. Oh-ishi, K. Hono, and K.S. Shin, Mater. Sci. Eng. A 496, 425. (2008).

    Article  Google Scholar 

  71. C.L. Mendis, K. Oh-ishi, T. Ohkubo, K.S. Shin, and K. Hono, Mater. Sci. Eng. A 553, 1. (2012).

    Article  Google Scholar 

  72. X. Chen, D. Zhang, J. Xu, J. Feng, Y. Zhao, B. Jiang, and F. Pan, J. Alloys Compd. 850, 156711. (2021).

    Article  Google Scholar 

  73. S. Yu, Y. Gao, C. Liu, and X. Han, J. Alloys Compd. 646, 431. (2015).

    Article  Google Scholar 

  74. C. Liu, C. Liu, H. Chen, and J.-F. Nie, J. Mater. Sci. Technol. 34, 284. (2018).

    Article  Google Scholar 

  75. T.T. Sasaki, J.D. Ju, K. Hono, and K.S. Shin, Scr. Mater. 61, 80. (2009).

    Article  Google Scholar 

  76. F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Mater. Sci. Eng. A 588, 318. (2013).

    Article  Google Scholar 

  77. T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono, Acta Mater. 99, 176. (2015).

    Article  Google Scholar 

  78. T. Hu, W. Xiao, F. Wang, Y. Li, S. Lyu, R. Zheng, and C. Ma, J. Alloys Compd. 735, 1494. (2018).

    Article  Google Scholar 

  79. T. Nakata, T. Mezaki, R. Ajima, C. Xu, K. Oh-ishi, K. Shimizu, S. Hanaki, T.T. Sasaki, K. Hono, and S. Kamado, Scr. Mater. 101, 28. (2015).

    Article  Google Scholar 

  80. T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, and S. Kamado, Acta Mater. 130, 261. (2017).

    Article  Google Scholar 

  81. T. Nakata, C. Xu, R. Ajima, Y. Matsumoto, K. Shimizu, T.T. Sasaki, K. Hono, and S. Kamado, Mater. Sci. Eng. A 712, 12. (2018).

    Article  Google Scholar 

  82. T. Nakata, C. Xu, T.T. Sasaki, Y. Matsumoto, K. Shimizu, K. Hono, and S. Kamado, Magnes. Technol. 2017, 17. (2017).

    Google Scholar 

  83. M. Cihova, R. Schäublin, L.B.B. Hauser, S.S.A.S.A. Gerstl, C. Simson, P.J.J. Uggowitzer, and J.F.F. Löffler, Acta Mater. 158, 214. (2018).

    Article  Google Scholar 

  84. X. Liu, X. Qiao, Z. Li, and M. Zheng, Mater. Charact. 162, 110197. (2020).

    Article  Google Scholar 

  85. M.Z. Bian, T.T. Sasaki, B.C. Suh, T. Nakata, S. Kamado, and K. Hono, Scr. Mater. 138, 151. (2017).

    Article  Google Scholar 

  86. M.Z. Bian, T.T. Sasaki, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, and K. Hono, Acta Mater. 158, 278. (2018).

    Article  Google Scholar 

  87. Z.H. Li, T.T. Sasaki, M.Z. Bian, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, and K. Hono, J. Alloys Compd. 847, 156347. (2020).

    Article  Google Scholar 

  88. T. Nakata, C. Xu, and S. Kamado, Mater. Sci. Eng. A 772, 138690. (2020).

    Article  Google Scholar 

  89. R. Shi, J. Miao, T. Avey, and A.A. Luo, Sci. Rep. 10, 10044. (2020).

    Article  Google Scholar 

  90. Z.H. Li, T.T. Sasaki, T. Shiroyama, A. Miura, K. Uchida, and K. Hono, Mater. Res. Lett. 8, 335. (2020).

    Article  Google Scholar 

  91. S. Yi, J.H. Park, D. Letzig, O.D. Kwon, K.U. Kainer, J.J. Kim, H. Geesthacht, and M.I. Centre, Magnes. Technol. 2016, 389. (2016).

    Google Scholar 

  92. B.-C. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M.-S. Shim, and N.J. Kim, Acta Mater. 124, 268. (2017).

    Article  Google Scholar 

  93. T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.-C. Suh, and N.J. Kim, Nat. Commun. 9, 2522. (2018).

    Article  Google Scholar 

  94. M.Z. Bian, T.T. Sasaki, T. Nakata, S. Kamado, and K. Hono, Mater. Sci. Eng. A 730, 147. (2018).

    Article  Google Scholar 

  95. S. Yi, J. Victoria-Hernández, Y. Kim, D. Letzig, and B. You, Metals (Basel) 9, 181. (2019).

    Article  Google Scholar 

  96. T. Nakata, C. Xu, H. Ohashi, Y. Yoshida, K. Yoshida, and S. Kamado, Scr. Mater. 180, 16. (2020).

    Article  Google Scholar 

  97. T. Nakata, C. Xu, Y. Yoshida, K. Yoshida, and S. Kamado, Mater. Sci. Eng. A 801, 140399. (2021).

    Article  Google Scholar 

  98. K. Liu, J.-T. Liang, W.-B. Du, S.-B. Li, Z.-H. Wang, Z.-J. Yu, and J.-X. Liu, Rare Met., (2020).

  99. M. Bian, X. Huang, M. Mabuchi, and Y. Chino, J. Alloys Compd. 818, 152891. (2020).

    Article  Google Scholar 

  100. G. Wang, G. Huang, Y. Huang, C. Zhang, B. Jiang, A. Tang, and F. Pan, JOM 72, 1607. (2020).

    Article  Google Scholar 

  101. W. Wang, L. Ma, S. Chai, W. Zhang, W. Chen, Y. Feng, and G. Cui, Mater. Sci. Eng. A 730, 162. (2018).

    Article  Google Scholar 

  102. T. Nakata, C. Xu, Y. Uehara, T.T.T. Sasaki, and S. Kamado, J. Alloys Compd. 782, 304. (2019).

    Article  Google Scholar 

  103. M. Bian, X. Huang, and Y. Chino, Mater. Sci. Eng. A 774, 138923. (2020).

    Article  Google Scholar 

  104. Q. Wang, B. Jiang, A. Tang, J. Fu, Z. Jiang, H. Sheng, D. Zhang, G. Huang, and F. Pan, J. Mater. Sci. Technol. 43, 104. (2020).

    Article  Google Scholar 

  105. Y. Chino, X. Huang, K. Suzuki, K. Sassa, and M. Mabuchi, Mater. Sci. Eng. A 528, 566. (2010).

    Article  Google Scholar 

  106. M. Bian, X. Huang, and Y. Chino, J. Alloys Compd. 834, 155017. (2020).

    Article  Google Scholar 

  107. Y. Tamura, H. Soda, and A. McLean, Mater. Trans. 61, 1280. (2020).

    Article  Google Scholar 

  108. H. Chen, S.B. Kang, H. Yu, H.W. Kim, and G. Min, Mater. Sci. Eng. A 492, 317. (2008).

    Article  Google Scholar 

  109. G.T. Bae, J.H. Bae, D.H. Kang, H. Lee, and N.J. Kim, Met. Mater. Int. 15, 1. (2009).

    Article  Google Scholar 

  110. Y. Wang, S.B. Kang, and J. Cho, J. Alloys Compd. 509, 704. (2011).

    Article  Google Scholar 

  111. J.-H. Cho, S.S. Jeong, and S.-B. Kang, Mater. Des. 110, 214. (2016).

    Article  Google Scholar 

  112. R.V. Allen, D.R. East, T.J. Johnson, W.E. Borbidge, and D. Liang, Magnesium Technology (John Wiley & Sons Inc, Hoboken, 2001), pp 74–79

    Google Scholar 

  113. K.-H. Kim, B.-C. Suh, J.H. Bae, M.-S. Shim, S. Kim, and N.J. Kim, Scr. Mater. 63, 716. (2010).

    Article  Google Scholar 

  114. M. Masoumi, F. Zarandi, and M.O. Pekguleryuz, Scr. Mater. 62, 823. (2010).

    Article  Google Scholar 

  115. M. Masoumi, F. Zarandi, and M. Pekguleryuz, Mater. Sci. Eng. A 528, 1268. (2011).

    Article  Google Scholar 

  116. Z. Zhang, M. Wang, Z. Li, N. Jiang, S. Hao, J. Gong, and H. Hu, J. Alloys Compd. 509, 5571. (2011).

    Article  Google Scholar 

  117. H. Watari, K. Davey, M.T. Rasgado, T. Haga, and S. Izawa, J. Mater. Process. Technol. 155–156, 1662. (2004).

    Article  Google Scholar 

  118. A.A. Kaya, O. Duygulu, S. Ucuncuoglu, G. Oktay, D.S. Temur, and O. Yucel, Trans. Nonferrous Met. Soc. China 18, s185. (2008).

    Article  Google Scholar 

  119. Z. Bian, I. Bayandorian, H.W. Zhang, G. Scamans, and Z. Fan, Mater. Sci. Technol. 25, 599. (2009).

    Article  Google Scholar 

  120. S.S. Park, G.T. Bae, D.H. Kang, B.S. You, and N.J. Kim, Scr. Mater. 61, 223. (2009).

    Article  Google Scholar 

  121. I. Bayandorian, Y. Huang, Z. Fan, S. Pawar, X. Zhou, and G. E. Thompson, Metall. Mater. Trans., A 43, 1035 (2012).

  122. L.L. Chang, J.H. Cho, and S.K. Kang, Mater. Des. 34, 746. (2012).

    Article  Google Scholar 

  123. C. Wang, J. Kang, K. Deng, K. Nie, W. Liang, and W. Li, J. Magnes. Alloy. 8, 441. (2020).

    Article  Google Scholar 

  124. L. Stutz, J. Bohlen, G. Kurz, D. Letzig, and K.U. Kainer, Key Eng. Mater. 473, 335. (2011).

    Article  Google Scholar 

  125. Y. Zhang, H. Jiang, Y. Wang, Q. Kang, J. Wang, H. Lin, and G. Zhang, Mater. Res. Express 6, 086576. (2019).

    Article  Google Scholar 

  126. S. Li, X. Yang, J. Hou, and W. Du, J. Magnes. Alloy. 8, 78. (2020).

    Article  Google Scholar 

  127. O. Madelung, and G.K. White (eds.), Thermal Conductivity of Pure Metals and Alloys 1st edn. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  128. H. Pan, F. Pan, X. Wang, J. Peng, J. She, C. Zhao, Q. Huang, K. Song, and Z. Gao, Mater. Sci. Technol. (United Kingdom) 30, 759. (2014).

    Article  Google Scholar 

  129. J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, and G. Shi, J. Alloys Compd. 578, 32. (2013).

    Article  Google Scholar 

  130. A. Rudajevová, M. Staněk, and P. Lukáč, Mater. Sci. Eng. A 341, 152. (2003).

    Article  Google Scholar 

  131. G. Li, J. Zhang, R. Wu, Y. Feng, S. Liu, X. Wang, Y. Jiao, Q. Yang, and J. Meng, J. Mater. Sci. Technol. 34, 1076. (2018).

    Article  Google Scholar 

  132. C.J. Chen, Q.D. Wang, and D.D. Yin, J. Alloys Compd. 487, 560. (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Taiki Nakata for provision of Fig. 9c. A part of this work was supported by the Elements Strategy Initiative for Structural Materials (ESISM) of MEXT (Grant Number JPMXP0112101000), JSPS KAKENHI [Grant Number JP18H01756 and JP20K15067] and Advanced Low Carbon Technology Research and Development Program (ALCA) [Grant Number 12102886].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Sasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, T.T., Bian, MZ., Li, Z.H. et al. Toward Development of Strong and Formable Magnesium Alloy Sheets with Bake-Hardenability. JOM 73, 1471–1483 (2021). https://doi.org/10.1007/s11837-021-04613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04613-1

Navigation