Skip to main content

Advertisement

Log in

Investigations on Positive (Sm3+) and Negative (Ho3+) Association Energy Ion Co-doped Cerium Oxide Solid Electrolytes for IT-SOFC Applications

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Novel compositions of positive (Sm3+) and negative (Ho3+) association energy ion co-doped cerium oxide solid electrolytes were synthesized and analyzed for intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. Powder x-ray diffraction (XRD) and Raman studies confirmed the phase of pure cubic fluorite structure, while densely packed porous-structured morphology was affirmed with high-resolution scanning electron microscope (HR-SEM) micrographs. The formations of oxygen vacancies and association energies were analyzed through optical properties using ultraviolet (UV) and photoluminescence (PL) spectra. Thermal analysis revealed high thermal stability without any structural deformations and a high thermal expansion coefficient at the intermediate temperature range. The incorporation of Sm3+ ions acts as an oxygen vacancy generator which influences the ionic conductivity properties, and Ce0.8Sm0.1Ho0.1O2−δ solid electrolyte showed the high conductivity of 0.72 × 10−2 S/cm at 600°C specifying that this solid electrolyte might be an excellent candidate for IT-SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.D. Wachsman, C.A. Marlowe, and K.T. Lee, Energy Environ. Sci. 5, 5498 (2012).

    Article  Google Scholar 

  2. L. Carrette, K.A. Friedrich, and U. Stimming, Fuel Cells 1, 5 (2001).

    Article  Google Scholar 

  3. A.B. Stambouli and E. Traversa, Renew. Sustain. Energy Rev. 6, 433 (2002).

    Article  Google Scholar 

  4. G. Hua, X. Ding, W. Zhu, and J. Li, J. Mater. Sci. Mater. Electron. 26, 3664 (2015).

    Article  Google Scholar 

  5. K. Amarsingh Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, and T.R. Rajasekaran, ACS J. Phys. Chem. C 120, 18452 (2016).

    Article  Google Scholar 

  6. S. Hui, J. Roller, S. Yick, X. Zhang, C.D. Petit, Y. Xie, R. Maric, and D. Ghosh, J. Power Sources 172, 493 (2007).

    Article  Google Scholar 

  7. A. Kalpana Devi, G. Ram Kumar, C. Prerna, K. Amarsingh Bhabu, V. Sabarinathan, and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron. 31, 10628 (2020).

    Article  Google Scholar 

  8. P. Sharma, C. Sharma, K.L. Singh, and A.P. Singh, JOM 70, 1398 (2018).

    Article  Google Scholar 

  9. K. Venkataramana, C. Madhuri, Y. Suresh Reddy, G. Bhikshamaiah, and C. Vishnuvardhan Reddy, J. Alloy. Compd. 719, 97 (2017).

    Article  Google Scholar 

  10. M. Anwar, S.A.M. Ali, N.A. Baharuddin, N.F. Raduwan, A. Muchtar, and M.R. Somalu, Ceram. Int. 44, 13639 (2018).

    Article  Google Scholar 

  11. A. Rafique, R. Raza, N.A. Arifin, M.K. Ullah, A. Ali, and R.S. Wilckens, Ceram. Int. 44, 6493 (2018).

    Article  Google Scholar 

  12. L.B. Winck, J.L.A. Ferreira, J.M.G. Martinez, J.A. Araujo, A.C.M. Rodrigues, and C.R.M. Silva, Ceram. Int. 43, 16408 (2017).

    Article  Google Scholar 

  13. N. Shehata, K. Meehan, M. Hudait, and N. Jain, J. Nanopart. Res. 14, 1 (2012).

    Article  Google Scholar 

  14. N. Shehata, K. Meehan, M. Hudait, N. Jain, and S. Gaballah, J. Nanomater. 401498, 1 (2014).

    Article  Google Scholar 

  15. K. Amarsingh Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan, and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron. 27, 1566 (2016).

    Article  Google Scholar 

  16. A.I.Y. Tok, S.W. Du, F.Y.C. Boey, and W.K. Chong, Mater. Sci. Eng. A 466, 223 (2007).

    Article  Google Scholar 

  17. S. Ajith Kumar, P. Kuppusami, S. Amirthapandian, and Y.P. Fu, Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.10.098.

    Article  Google Scholar 

  18. M. Guo, J. Lu, Y. Wu, Y. Wang, and M. Luo, Langmuir 27, 3872 (2011).

    Article  Google Scholar 

  19. K. Amarsingh Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, T.R. Rajasekaran, and A.K. Arof, Ionics 22, 2461 (2016).

    Article  Google Scholar 

  20. K. Sakthiraj and B. Karthikeyan, Appl. Phys. A 52, 1 (2020).

    Google Scholar 

  21. G. Vinothkumar, R. Subrayan, A. Pandiyan, S.W. Cha, and S.B.K. Moorthy, ACS J. Phys. Chem. C 123, 541 (2019).

    Article  Google Scholar 

  22. R.C. Deus, J.A. Cortes, M.A. Ramirez, M.A. Ponce, J. Andres, L.S.R. Rocha, E. Longo, and A.Z. Simoes, Mater. Res. Bull. 70, 426 (2015).

    Article  Google Scholar 

  23. K. Amarsingh Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron. 27, 10980 (2016).

    Article  Google Scholar 

  24. Y. Tan, Y. Yan, H. Du, X. Hu, G. Li, Y. Kuang, M. Li, and D. Guo, Opt. Mater. 85, 538 (2018).

    Article  Google Scholar 

  25. M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, J. Mater. Chem. C 3, 7014 (2015).

    Article  Google Scholar 

  26. H.H. Ko, G. Yang, M.C. Wang, and X. Zhao, Ceram. Int. 40, 13953 (2014).

    Article  Google Scholar 

  27. W. Ma, S. Gong, H. Xu, and X. Cao, Scr. Mater. 54, 1505 (2006).

    Article  Google Scholar 

  28. W. Huang, P. Shuk, and M. Greenblatt, Solid State Ion. 100, 23 (1997).

    Article  Google Scholar 

  29. N.W. Mazlan, N. Osman, and O.H. Hassan, AIP Conf. Proc. 2031, 020014-1 (2018).

    Google Scholar 

  30. J. Varalda, C.A. Dartora, P.C. de Camargo, A.J.A. de Oliveira, and D.H. Mosca, Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  31. S. Panigrahi, R.C. Biswal, S. Anwar, L. Besra, and S. Bhattacharjee, J. Am. Ceram. Soc. 96, 2846 (2013).

    Article  Google Scholar 

  32. S.A.M. Ali, M. Anwar, A.M. Abdalla, M.R. Somalu, and A. Muchtar, Ceram. Int. 43, 1265 (2017).

    Article  Google Scholar 

  33. M. Anwar, S.A.M. Ali, A.M. Abdalla, M.R. Somalu, and A. Muchtar, Process. Appl. Ceram. 11, 67 (2017).

    Article  Google Scholar 

  34. A. Arabaci, Open Chem. 16, 827 (2018).

    Article  Google Scholar 

  35. L.A. Eressa and P.V.B. Rao, Mater. Chem. Phys. 242, 121914-1 (2020).

    Article  Google Scholar 

  36. J. Cheng, C. Tian, and J. Yang, J. Mater. Sci. Mater. Electron. 30, 16613 (2019).

    Article  Google Scholar 

  37. S.J. Skinner and J.A. Kilner, Mater. Today 6, 30 (2003).

    Article  Google Scholar 

  38. J.L.M. Rupp and L.J. Gauckler, Solid State Ion. 177, 2513 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Kalpana Devi Ayyanathan thanks the Rashtriya Uchchatar Shiksha Abhiyan (RUSA), Government of India, for providing the characterization facilities at the Department of Renewable Energy Science, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanjavur Renganathan Rajasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpana Devi, A., Ram kumar, G., Prerna, C. et al. Investigations on Positive (Sm3+) and Negative (Ho3+) Association Energy Ion Co-doped Cerium Oxide Solid Electrolytes for IT-SOFC Applications. JOM 73, 2754–2763 (2021). https://doi.org/10.1007/s11837-020-04500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04500-1

Navigation