Skip to main content
Log in

Physical Processing of Discarded Integrated Circuits for Recovery of Metallic Values

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recycling of discarded integrated circuits is an important issue related to waste management, resource conservation, and metal recovery aspects. In this study, physical processing comprising water fluidization, magnetic separation, and density separation of discarded units was followed to recover Cu, Fe, Ni, and Si values. The fluidization technique provided an enriched metal concentrate comprising 53.05% Cu, 16.2% Fe, and 10.5% Ni in the underflow fraction, and the overflow fraction comprised 63.1% Si with 17.8% C. High metallic dissolution was attained for the processed samples compared with the feed leaching because of effective separation of the non-metallic fraction during physical processing. Overall, 1 kg of discarded ICs yielded ~ 120 g ferrous metal with ~ 57.4% Fe and ~ 26% Ni purity and ~ 390 g metallic values with 85% Cu and ~ 490 g non-metallic values with ~ 84% Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.A. Ajiboye, E.F. Olasehinde, A.O. Adebayo, O.O. Ajayi, M.K. Ghosh, and S. Basu, Chem. Pap. 74, 663 (2019).

    Article  Google Scholar 

  2. M. Iji, J. Mater. Sci. 33, 45 (1998).

    Article  Google Scholar 

  3. Y. Liu, K. Li, J. Guo, and Z. Xu, J. Clean. Prod. 197, 1488 (2018).

    Article  Google Scholar 

  4. A. Kumari, M.K. Jha, and R.P. Singh, Hydrometallurgy 165, 97 (2016).

    Article  Google Scholar 

  5. K. Ulman, A. Ghose, S. Maroufi, I. Mansuri, and V. Sahajwalla, Waste Manag 81, 138 (2018).

    Article  Google Scholar 

  6. A. Shokri, F. Pahlevani, I. Cole, and V. Sahajwalla, J. Environ. Manage. 199, 7 (2017).

    Article  Google Scholar 

  7. A. Shokri, F. Pahlevani, K. Levick, I. Cole, and V. Sahajwalla, J. Clean. Prod. 142, 2586 (2017).

    Article  Google Scholar 

  8. H. Lee and B. Mishra, Miner. Eng. 123, 1 (2018).

    Article  Google Scholar 

  9. C. Duan, X. Wen, C. Shi, Y. Zhao, B. Wen, and Y. He, J. Hazard. Mater. 166, 478 (2009).

    Article  Google Scholar 

  10. F. Wang, Y. Zhao, T. Zhang, G. Zhang, X. Yang, Y. He, L. Wang, and C. Duan, J. Clean. Prod. 165, 452 (2017).

    Article  Google Scholar 

  11. J. Cui and E. Forssberg, J. Hazard. Mater. 99, 243 (2003).

    Article  Google Scholar 

  12. R.H. Estrada-Ruiz, R. Flores-Campos, H.A. Gámez-Altamirano, and E.J. Velarde-Sánchez, J. Hazard. Mater. 311, 91 (2016).

    Article  Google Scholar 

  13. C.H. Lee, L.W. Tang, and S.R. Popuri, Waste Manag. Res. 29, 677 (2011).

    Article  Google Scholar 

  14. K. Li, L. Zhang, and Z. Xu, J. Hazard. Mater. 374, 356 (2019).

    Article  Google Scholar 

  15. E.A. Ajiboye, P.K. Panda, A.O. Adebayo, O.O. Ajayi, B.C. Tripathy, M.K. Ghosh, and S. Basu, Hydrometallurgy 188, 161 (2019).

    Article  Google Scholar 

  16. H.L. Chiang, K.H. Lin, M.H. Lai, T.C. Chen, and S.Y. Ma, J. Hazard. Mater. 149, 151 (2007).

    Article  Google Scholar 

  17. E. Ventura, A. Futuro, S.C. Pinho, M.F. Almeida, and J.M. Dias, J. Environ. Manage. 223, 297 (2018).

    Article  Google Scholar 

  18. A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici, and H. Deveci, Miner. Eng. 25, 28 (2012).

    Article  Google Scholar 

  19. A.C. Kasper, H.M. Veit, M. García-Gabaldón, and V.P. Herranz, Electrochim. Acta 259, 500 (2018).

    Article  Google Scholar 

  20. A. Barnwal and N. Dhawan, J. Sustain. Metall. 5, 519 (2019).

    Article  Google Scholar 

  21. S. Jeon, M. Ito, C.B. Tabelin, R. Pongsumrankul, S. Tanaka, N. Kitajima, A. Saito, I. Park, and N. Hiroyoshi, Miner. Eng. 138, 168 (2019).

    Article  Google Scholar 

  22. T. Fujita, H. Ono, G. Dodbiba, and K. Yamaguchi, Waste Manag 34, 1264 (2014).

    Article  Google Scholar 

  23. X. Yan, and D. Xue, Nano-Micro. Lett. 4, 176 (2012).

    Article  Google Scholar 

  24. R.K. Nekouei, F. Pahlevani, R. Rajarao, R. Golmohammadzadeh, and V. Sahajwalla, J. Clean. Prod. 184, 1113 (2018).

    Article  Google Scholar 

  25. S. Musić, N. Filipović-Vinceković, and L. Sekovanić, Brazilian J. Chem. Eng. 28, 89 (2011).

    Google Scholar 

  26. R. Cayumil, R. Khanna, R. Rajarao, P.S. Mukherjee, and V. Sahajwalla, Waste Manag 57, 121 (2016).

    Article  Google Scholar 

  27. C. Hagelueken, Acta Metall. Slovaca 12, 111 (2006).

    Google Scholar 

  28. D. Dutta, R. Panda, A. Kumari, S. Goel, and M.K. Jha, Sustain. Mater. Technol. 17, e00066 (2018).

    Google Scholar 

  29. Z. Wang, S. Guo, and C. Ye, Procedia. Environ. Sci. 31, 917 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the Indian Institute of Technology, Roorkee, through the Faculty Initiation Grant and are also thankful to the Institute Computer Center and the Institute Instrumentation Center for providing the discarded samples and characterization facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnwal, A., Dhawan, N. Physical Processing of Discarded Integrated Circuits for Recovery of Metallic Values. JOM 72, 2730–2738 (2020). https://doi.org/10.1007/s11837-020-04137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04137-0

Navigation