Skip to main content
Log in

Hydride Mapping in Uranium Using MLLS Fitting of Electron Energy-Loss Spectra

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Previous studies of the reaction of hydrogen gas with uranium metal have been mainly limited to microscale or higher observations of uranium surfaces. We have characterized subsurface features of uranium hydride structures formed in a depleted uranium pellet aged for over 9 years under a controlled atmosphere with an initial H2 partial pressure of 0.667 kPa (5 torr) using electron energy-loss spectroscopy (EELS), giving information at lower length scales than previously reported. We demonstrate that multiple linear least-squares fitting of the O4,5 edge of the uranium EEL spectrum, with input spectra generated from the dataset being analyzed, can be used to map hydride and metal phases in aged uranium metal at the nanometer scale. While the interface between the bulk metal and the subsurface hydride structures is sharp and well defined, the interior of the reacted region is heterogeneous, containing a mix of polycrystalline UH3 and stranded, apparently unreacted, U metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.E. Stromeyer, J. Iron Steel Inst.79, 404 (1909)

    Google Scholar 

  2. J.H. Andrew, Trans. Faraday Soc.9, 316 (1914)

    Google Scholar 

  3. N. Kaltsoyannis and P. Scott, The f Elements (Oxford University Press, Oxford, 1999)

    Google Scholar 

  4. E. Péligot, Comptes Rendus 12, 735 (1841)

    Google Scholar 

  5. H.L. Anderson, E.T. Booth, E. Fermi, G.N. Glasoe, and F.G. Slack, Phys. Rev.55, 511 (1939)

    Google Scholar 

  6. J.E. Burke and C.S. Smith, J. Am. Chem. Soc.69, 2500 (1947)

    Google Scholar 

  7. J. Gueron and L. Yaffe, Nature160, 575 (1947)

    Google Scholar 

  8. R.E. Rundle, J. Am. Chem. Soc.69, 1719 (1947)

    Google Scholar 

  9. R.N.R. Mulford, F.H. Ellinger, and W.H. Zachariasen, J. Am. Chem. Soc.76, 297 (1954)

    Google Scholar 

  10. J.B. Condon and E.A. Larson, J. Chem. Phys.59, 855 (1973)

    Google Scholar 

  11. M. Peretz and D. Zamir, J. Phys. Chem. Solids37, 105 (1976)

    Google Scholar 

  12. J. Bloch and M.H. Mintz, J. Nucl. Mater.110, 251 (1982)

    Google Scholar 

  13. J.R. Kirkpatrick and J.B. Condon, J. Less Common Metals172–174, 124 (1991)

    Google Scholar 

  14. J. Bloch and M.H. Mintz, J. Alloys Compd.253–254, 529 (1997)

    Google Scholar 

  15. M. Brill, J. Bloch, and M.H. Mintz, J. Alloys Compd.266, 180 (1998)

    Google Scholar 

  16. Y. Ben-Eliyahu, M. Brill, and M.H. Mintz, J. Chem. Phys.111, 6053 (1999)

    Google Scholar 

  17. K. Balasubramanian, W.J. Siekhaus, and W. McLean, J. Chem. Phys.119, 5889 (2003)

    Google Scholar 

  18. I. Chernov, J. Bloch, and I. Gabis, Int. J. Hydrog. Energy33, 5589 (2008)

    Google Scholar 

  19. C.D. Taylor, T. Lookman, and R.S. Lillard, Acta Mater.58, 1045 (2010)

    Google Scholar 

  20. J. Bloch and M.H. Mintz, J. Less Common Metals81, 301 (1981)

    Google Scholar 

  21. G.C. Allen and C.H.S. Stevens, J. Chem. Soc. Faraday Trans.84, 165 (1988)

    Google Scholar 

  22. J. Bloch, D. Brami, and A. Kremner, J. Less Common Metals139, 371 (1988)

    Google Scholar 

  23. S.G. Bazley, J.R. Petherbridge, and J. Glascott, Solid State Ionics211, 1 (2012)

    Google Scholar 

  24. R. Orr, H. Godfrey, C. Broan, D. Goddard, G. Woodhouse, P. Durham, A. Diggle, and J. Bradshaw, J. Nucl. Mater.477, 236 (2016)

    Google Scholar 

  25. J. Bloch and M.H. Mintz, J. Alloys Compd.241, 224 (1996)

    Google Scholar 

  26. R.J. Hanrahan, M.E. Hawley, and G.W. Brown, Los Alamos National Laboratory, Los Alamos, NM, MRS Online Proceedings Library Archive, 513 (1998).

  27. A.L. DeMint and J.H. Leckey, J. Nucl. Mater.281, 208 (2000)

    Google Scholar 

  28. R. Arkush, M. Brill, S. Zalkind, M.H. Mintz, and N. Shamir, J. Alloys Compd.330–332, 472 (2002)

    Google Scholar 

  29. C.D. Taylor and R.S. Lillard, Acta Mater.57, 4707 (2009)

    Google Scholar 

  30. N.J. Harker, T.B. Scott, C.P. Jones, J.R. Petherbridge, and J. Glascott, Solid State Ionics241, 46 (2013)

    Google Scholar 

  31. R. Li and X. Wang, J. Nucl. Mater.449, 49 (2014)

    Google Scholar 

  32. W.J. Siekhaus, P.K. Weber, I.D. Hutcheon, J.E.P. Matzel, and W.J. McLean, J. Alloys Compd.645, S225 (2015)

    Google Scholar 

  33. T.B. Scott, G.C. Allen, I. Findlay, and J. Glascott, Philos. Mag.87, 177 (2007)

    Google Scholar 

  34. C.P. Jones, T.B. Scott, J.R. Petherbridge, and J. Glascott, Solid State Ionics231, 81 (2013)

    Google Scholar 

  35. A. Banos and T.B. Scott, Solid State Ionics296, 137 (2016)

    Google Scholar 

  36. L.W. Owen and R.A. Scudamore, Corros. Sci.6, 461 (1966)

    Google Scholar 

  37. J. Bloch and M.H. Mintz, J. Less Common Metals166, 241 (1990)

    Google Scholar 

  38. R. Arkush, A. Venkert, M. Aizenshtein, S. Zalkind, D. Moreno, M. Brill, M.H. Mintz, and N. Shamir, J. Alloys Compd.244, 197 (1996)

    Google Scholar 

  39. T.C.J. Totemeier, J. Nucl. Mater.278, 301 (2000)

    Google Scholar 

  40. D.F. Teter, R.J. Hanrahan, and C.J. Wetteland, Report No. LA-13772-MS, Los Alamos National Laboratory, Los Alamos, NM, March 2001

  41. R.M. Harker, J. Alloys Compd.426, 106 (2006)

    Google Scholar 

  42. J. Glascott, Philos. Mag.94, 221 (2013)

    Google Scholar 

  43. M.A. Hill, R.K. Schulze, J.F. Bingert, R.D. Field, R.J. McCabe, and P.A. Papin, J. Nucl. Mater.442, 106 (2013)

    Google Scholar 

  44. J.P. Knowles and I.M. Findlay, J. Alloys Compd.645, S230 (2015)

    Google Scholar 

  45. A. Banos, C.A. Stitt, and T.B. Scott, Corros. Sci.113, 91 (2016)

    Google Scholar 

  46. J.R. Petherbridge, J. Knowles, and S.G. Bazley, Solid State Ionics292, 110 (2016)

    Google Scholar 

  47. R. Bin, G. Zhang, H. Ji, L. Luo, P. Shi, and X. Wang, J. Nucl. Mater.494, 55 (2017)

    Google Scholar 

  48. T. Tanabe, S. Miura, and S. Imoto, J. Nucl. Sci. Technol.16, 690 (1979)

    Google Scholar 

  49. J. Bloch, F. Simca, M. Kroup, A. Stern, D. Shmariahu, M.H. Mintz, and Z. Hadari, J. Less Common Metals103, 163 (1984)

    Google Scholar 

  50. S. Blaxland, The Involvement of Stress in Uranium Corrosion Phenomena (Doctoral dissertation, The University of Manchester, UK, 2015)

  51. M.L. Knotek and P.J. Feibelman, Surf. Sci.90, 78 (1979)

    Google Scholar 

  52. D.J. Smith, M.R. McCartney, and L.A. Bursill, Ultramicroscopy23, 299 (1987)

    Google Scholar 

  53. F. de la Peña, T. Ostasevicius, V.T. Fauske, P. Burdet, E. Prestat, P. Jokubauskas, M. Nord, M. Sarahan, K.E. MacArthur, D.N. Johnstone, J. Taillon, J. Caron, V. Migunov, T. Furnival, A. Eljarrat, S. Mazzucco, T. Aarholt, M. Walls, T. Slater, F. Winkler, B. Martineau, G. Donval, R. McLeod, E.R. Hoglund, I. Alxneit, I. Hjorth, T. Henninen, L.F. Zagonel, and A. Garmannslund, hyperspy/hyperspy: HyperSpy 1.3.2. (2018). https://doi.org/10.5281/zenodo.1221347

  54. Anaconda Software Distribution. Computer software. Vers. 3-5.1.0. Anaconda (2018), https://anaconda.com. Accessed 5 Feb 2018

  55. W.D. Davis, Report No. KAPL-1548, Knolls Atomic Power Laboratory, General Electric Company, Schenectady, NY (1956)

Download references

Acknowledgements

Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Project No. 20180295ER. M.T.J. thanks Colin Ophus (NCEM) and Benjamin Miller (Gatan, Inc.) for discussions related to Python and the general viability of MLLS fitting of EELS data, respectively. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is managed by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Janish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janish, M.T., Schneider, M.M., Holby, E.F. et al. Hydride Mapping in Uranium Using MLLS Fitting of Electron Energy-Loss Spectra. JOM 72, 2096–2103 (2020). https://doi.org/10.1007/s11837-020-04128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04128-1

Navigation