Skip to main content
Log in

Synchrotron X-ray diffraction techniques for in situ measurement of hydride formation under several gigapascals of hydrogen pressure

  • Article
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

The high-pressure technique is a fundamental tool for realizing novel phase transitions, chemical reactions, and other exotic phenomena. Hydrogenation is one example of a high-pressure reaction; at high pressures of several gigapascals, hydrogen becomes chemically active and reacts with metals and alloys to form hydrides. This paper covers a high-pressure study of the hydrogenation process and the synthesis of hydrides using a cubic-type multi-anvil apparatus. The experimental details of a hydrogenation cell assembly, high-temperature and high-pressure generation, and an in situ observation technique are presented. These experiments are conducted with the aid of in situ synchrotron radiation X-ray diffraction measurements operated in an energy-dispersive mode in the conventional manner for time-resolved measurements and a newly developed angle-dispersive mode for observation of the crystal growth process during formation of metal hydrides. Two successful cases of high-pressure hydrogenation are presented: aluminum hydride, AlH3, and an aluminum-based alloy hydride, Al2CuH x , which are potential candidates for hydrogen storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fukai Y (2005) The metal–hydrogen system. Springer, Berlin

    Google Scholar 

  2. Baranowski B, Filipek SM (2005) 45 years of nickel hydride—history and perspectives. J Alloys Compd 404–406:2–6

    Article  Google Scholar 

  3. Filipek SM (2007) Metal hydrides under high hydrostatic pressure. J Adv Sci 19:1–10

    Article  Google Scholar 

  4. Filipek SM, Paul-Boncour V, Kuriyama N et al (2010) Hydrides of Laves phases intermetallic compounds synthesized under high hydrogen pressure. Solid State Ion 181:306–310

    Article  Google Scholar 

  5. Antonov VE (2002) Phase transformations, crystal and magnetic structures of high-pressure hydrides of d-metals. J Alloys Compd 330–332:110–116

    Article  Google Scholar 

  6. Antonov VE, Cornell K, Fedotov VK et al (1998) Neutron diffraction investigation of the dhcp and hcp iron hydrides and deuterides. J Alloys Compd 264:214–222

    Article  Google Scholar 

  7. Wakamori K, Filipek SM, Sawaoka A (1983) Convenient method for the synthesis of rare-earth hydrides by the use of a conventional very high pressure technique. Rev Sci Instrum 54:1410

    Article  Google Scholar 

  8. Fukai Y, Fukizawa A, Watanabe K et al (1982) Hydrogen in iron—its enhanced dissolution under pressure and stabilization of the γ phase. Jpn J Appl Phys 21:L318–L320

    Article  Google Scholar 

  9. Fukai Y, Okuma N (1993) Evidence of copious vacancy formation in Ni and Pd under a high hydrogen pressure. Jpn J Appl Phys 32:L1256–L1259

    Article  Google Scholar 

  10. Kyoi D, Rönnebro E, Kitamura N et al (2003) The first magnesium–chromium hydride synthesized by the gigapascal high-pressure technique. J Alloys Compd 361:252–256

    Article  Google Scholar 

  11. Moser D, Bull DJ, Sato T et al (2009) Structure and stability of high pressure synthesized Mg–TM hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage. J Mater Chem 19:8150–8161

    Article  Google Scholar 

  12. Kamegawa A, Goto Y, Kataoka R et al (2008) High-pressure synthesis of novel compounds in an MgNi system. Renew Energy 33:221–225

    Article  Google Scholar 

  13. Osugi J, Shimizu K, Inoue K et al (1964) A compact cubic anvil high pressure apparatus. Rev Phys Chem Jpn 34:1

    Google Scholar 

  14. Saitoh H, Machida A, Katayama Y et al (2008) Formation and decomposition of AlH3 in the aluminum–hydrogen system. Appl Phys Lett 93:151918

    Article  Google Scholar 

  15. Takemura K, Sahu P C, Kunii Y et al (2001) Versatile gas-loading system for diamond-anvil cells. Rev Sci Instrum 72:3873–3876

  16. Machida A, Ohmura A, Watanuki T et al (2006) X-ray diffraction investigation of the hexagonal–fcc structural transition in yttrium trihydride under hydrostatic pressure. Solid State Commun 138:436–440

    Article  Google Scholar 

  17. Ohmura A, Machida A, Watanuki T et al (2006) Infrared spectroscopic study of the band-gap closure in YH3 at high pressure. Phys Rev B 73:104105

    Article  Google Scholar 

  18. Sugimoto H, Fukai Y (1992) Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations. Acta Metall Mater 40:2327–2336

    Article  Google Scholar 

  19. Saitoh H, Machida A, Katayama Y et al (2009) Hydrogenation of passivated aluminum with hydrogen fluid. Appl Phys Lett 94:151913–151915

    Article  Google Scholar 

  20. Decker DL (1971) High-pressure equation of state for NaCl, KCl, and CsCl. J Appl Phys 42:3239–3244

    Article  Google Scholar 

  21. Utsumi W, Funakoshi K, Katayama Y et al (2002) High-pressure science with a multi-anvil apparatus at SPring-8. J Phys: Condens Matter 14:10497–10504

    Google Scholar 

  22. Hattori T, Saitoh H, Kaneko H et al (2006) Does bulk metallic glass of elemental Zr and Ti exist? Phys Rev Lett 96:255504

    Article  Google Scholar 

  23. Nishihara Y, Funakoshi KI, Higo Y et al (2009) Stress measurement under high pressure using Kawai-type multi-anvil apparatus combined with synchrotron radiation. J Synchrotron Radiat 16:757–761

    Article  Google Scholar 

  24. Saitoh H, Okajima Y, Yoneda Y et al (2010) Formation and crystal growth process of AlH3 in Al–H system. J Alloys Compd 496:L25–L28

    Article  Google Scholar 

  25. Zhao Y, Zhang J (2008) Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure themomechanics. J Appl Cryst 41:1095–1108

    Article  Google Scholar 

  26. Graetz J, Reilly JJ, Yartys VA et al (2011) Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd 509(Suppl):S517–S528

    Article  Google Scholar 

  27. Graetz J, Hauback BC (2013) Recent developments in aluminum-based hydrides for hydrogen storage. MRS Bull 38:473–479

    Article  Google Scholar 

  28. Orimo S, Nakamori Y, Kato T et al (2006) Intrinsic and mechanically modified thermal stabilities of α-, β- and γ-aluminum trihydrides AlH3. Appl Phys A 83:5–8

    Article  Google Scholar 

  29. Zidan R, Garcia-Diaz BL, Fewox CS et al (2009) Aluminium hydride: a reversible material for hydrogen storage. Chem Commun 25:3717–3719

  30. Turley JW, Rinn HW (1969) Crystal structure of aluminum hydride. Inorg Chem 8:18–22

    Article  Google Scholar 

  31. Goncharenko I, Eremets MI, Hanfland M et al (2008) Pressure-induced hydrogen-dominant metallic state in aluminum hydride. Phys Rev Lett 100:45504

    Article  Google Scholar 

  32. Tkacz M, Filipek S, Baranowski B (1983) High pressure synthesis of aluminum hydride from the elements. Pol J Chem 57:651–653

    Google Scholar 

  33. Konovalov SK, Bulychev BM, The P (1995) T-state diagram and solid phase synthesis of aluminum hydride. Inorg Chem 34:172–175

    Article  Google Scholar 

  34. Sakharov MK, Antonov VE, Markushkin YE et al (2007) The diagram of phase transformation and phase equilibria in the Al–H system at pressures up to 90 kbar Abstracts of AIRAPT-21 (Catania, Italy), pp 202–203

  35. Kato S, Bielmann M, Ikeda K et al (2010) Surface changes on AlH3 during the hydrogen desorption. Appl Phys Lett 96:051912

    Article  Google Scholar 

  36. Saitoh H, Machida A, Katayama Y et al (2010) Hydrogen permeation pathways for the hydrogenation reaction of aluminum. J Appl Phys 108:063516

    Article  Google Scholar 

  37. Uchida H, Uchida H, Huang YC (1984) Effect of the pulverization of LaNi5 on the hydrogen absorption rate and the X-ray diffraction patterns. J Less-Common Met 101:459–468

  38. Saitoh H, Takagi S, Endo N et al (2013) Synthesis and formation process of Al2CuH x : a new class of interstitial aluminum-based alloy hydride. APL Mater 1:032113

    Article  Google Scholar 

  39. Meetsma A, De Boer JL, Van Smaalen S (1989) Refinement of the crystal structure of tetragonal Al2Cu. J Solid State Chem 83:370–372

    Article  Google Scholar 

  40. Errandonea D (2010) The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys 108:033517

    Article  Google Scholar 

  41. Hattori T, Sano A, Arima H et al (2012) BL11: completion of high pressure neutron diffractometer PLANET. MLF Annual report 2011, pp 88–89

  42. Hattori T, Sano-Furukawa A, Yamada A et al (2012) BL11: performance of high pressure neutron diffractometer PLANET. MLF Annual report

Download references

Acknowledgments

This work was partially supported by New Energy and Industrial Technology Development Organization (NEDO) under “Advanced Fundamental Research Project on Hydrogen Storage Materials” and “Feasibility Study on Advanced Hydrogen Storage Materials for Automotive Applications (2012)”, by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) under the “Photon and Quantum Basic Research Coordinated Development Program”, and by Japan Society for the Promotion of Science (JSPS) KAKENHI (25220911, 24241032, and 25420725). The synchrotron radiation experiments were performed at BL14B1 of SPring-8 with the approval of Japan Atomic Energy Agency (JAEA) (2011B3602 and 2012B3602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Saitoh.

Additional information

SPECIAL TOPIC: High Pressure Physics

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, H., Machida, A. & Aoki, K. Synchrotron X-ray diffraction techniques for in situ measurement of hydride formation under several gigapascals of hydrogen pressure. Chin. Sci. Bull. 59, 5290–5301 (2014). https://doi.org/10.1007/s11434-014-0543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0543-8

Keywords

Navigation