Skip to main content
Log in

High-Performance Pseudocapacitive Electrode Based on Electrophoretically Deposited NiCo2O4/MWCNTs Nanocomposite on 316L Stainless Steel

  • Electrochemical Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nickel cobaltite (NiCo2O4) nanorods with spinel structure have been synthesized using a template-free hydrothermal method. The structure and morphology of the as-prepared nanorods were studied by x-ray diffraction analysis, field-emission scanning electron microscopy, and nitrogen adsorption–desorption measurements. Binder-free NiCo2O4 and NiCo2O4/carbon nanotube electrodes were fabricated via an electrophoretic deposition (EPD) procedure then subjected to electrochemical evaluation using cyclic voltammetry and galvanostatic charge–discharge measurements. The results revealed that the pseudocapacitive performance was enhanced by introducing CNTs into the NiCo2O4 electrode. Compared with the pure NiCo2O4 electrode, the composite electrode exhibited excellent energy storage performance with high specific capacitance of 1540 F g−1 at 3.5 A g−1, good rate performance with capacitance of 664 F g−1 even at high current density of 7.5 A g−1, and reasonable cycling performance (73% capacitance retention after 3000 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Maiyalagan, B. Viswanathan, and U. Varadaraju, Bull. Mater. Sci. 29, 7 (2006).

    Google Scholar 

  2. Z. Sun and X. Lu, Ind. Eng. Chem. Res. 51, 9973 (2012).

    Google Scholar 

  3. Y. Tao, Z. Haiyan, L. Ruiyi, L. Zaijun, L. Junkang, W. Guangli, and G. Zhiquo, Electrochim. Acta 111, 71 (2013).

    Google Scholar 

  4. w.G. Pell, B.E. Conway, W.A. Adams, and J.D. Oliveira, J. Power Sources 80, 134 (1999).

  5. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energ. Environ. Sci. 3, 1238 (2010).

    Google Scholar 

  6. D. Cai, D. Wang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li, and T. Wang, ACS Appl. Mater. Interfaces 6, 5050 (2014).

    Google Scholar 

  7. J. Huang, T. Lei, X. Wei, X. Liu, T. Liu, D. Cao, J. Yin, and G. Wang, J. Power Sources 232, 370 (2013).

    Google Scholar 

  8. W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, and H.N. Alshareef, Nano Lett. 11, 5165 (2011).

    Google Scholar 

  9. D. Wei, M.R. Scherer, C. Bower, P. Andrew, T. Ryhänen, and U. Steiner, Nano Lett. 12, 1857 (2012).

    Google Scholar 

  10. S.A. Hashmi, R.J. Latham, R.G. Linford, and W.S. Schlindwein, Polym. Int. 47, 28 (1998).

    Google Scholar 

  11. K.S. Ryu, K.M. Kim, N.G. Park, Y.J. Park, and S.H. Chang, J. Power Sources 103, 305 (2002).

    Google Scholar 

  12. A.K. Shukla, S. Sampath, and K. Vijayamohanan, Curr. Sci. 79, 1656 (2000).

    Google Scholar 

  13. G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Nano Energy 2, 213 (2013).

    Google Scholar 

  14. X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, and X. Zhao, Chem. Eur. J. 17, 10898 (2011).

    Google Scholar 

  15. R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han, and H. Ahn, J. Alloys Compd. 509, 6677 (2011).

    Google Scholar 

  16. C.D. Lokhande, D.P. Dubal, and O.S. Joo, Curr. Appl. Phys. 11, 255 (2011).

    Google Scholar 

  17. C.C. Hu, K.H. Chang, M.C. Lin, and Y.T. Wu, Nano Lett. 6, 2690 (2006).

    Google Scholar 

  18. Y. Zhang, X. Xia, J. Kang, and J. Tu, Chin. Sci. Bull. 57, 4215 (2012).

    Google Scholar 

  19. F. Shi, L. Li, X.L. Wang, C.D. Gu, and J.P. Tu, RSC Adv. 4, 41910 (2014).

    Google Scholar 

  20. L.A. De Faria, M. Prestat, J.F. Koenig, P. Chartier, and S. Trasatti, Electrochim. Acta 44, 1481 (1998).

    Google Scholar 

  21. I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov, and T. Vitanov, J. Electroanal. Chem. 429, 157 (1997).

    Google Scholar 

  22. D. Klissurski and E. Uzunova, J. Mater. Sci. 29, 285 (1994).

    Google Scholar 

  23. B. Cui, H. Lin, Y.Z. Liu, J.B. Li, P. Sun, X.C. Zhao, and C.J. Liu, J. Phys. Chem. C 113, 14083 (2009).

    Google Scholar 

  24. Y. Wang and I. Zhitomirsky, Langmuir 25, 9684 (2009).

    Google Scholar 

  25. W.M. Liu, T.T. Gao, Y. Yang, Q. Sun, and Z.W. Fu, Phys. Chem. Chem. Phys. 15, 15806 (2013).

    Google Scholar 

  26. H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang, J. Guo, Q. He, Z. Guo, and X. Wang, J. Mater. Chem. A 3, 19545 (2015).

    Google Scholar 

  27. X. Zhu, H. Dai, J. Hu, L. Ding, and L. Jiang, J. Power Sources 203, 243 (2012).

    Google Scholar 

  28. E. Zapata-Solvas, D. Gómez-García, and A. Domínguez-Rodríguez, J. Eur. Ceram. Soc. 32, 3001 (2012).

    Google Scholar 

  29. D. Michos, Basic aluminum nitrate. 2010, Google Patents.

  30. S.E.H. Yeganeh, M. Kazazi, B.K. Kaleji, S.H. Kazemi, and B. Hosseinzadeh, J. Mater. Sci.: Mater. Electron. 29, 10841 (2018).

    Google Scholar 

  31. A.R. Boccaccini and I. Zhitomirsky, Curr. Opin. Solid State Mater. Sci. 6, 251 (2002).

    Google Scholar 

  32. H. Fang, S. Zhang, X. Wu, W. Liu, B. Wen, Z. Du, and T. Jiang, J. Power Sources 235, 95 (2013).

    Google Scholar 

  33. M. Kazazi and R. Karami, Solid State Ion. 308, 8 (2017).

    Google Scholar 

  34. V.G. Deshmane, R.Y. Abrokwah, and D. Kuila, J. Mol. Catal. A: Chem. 408, 202 (2015).

    Google Scholar 

  35. L. Bakhtiari, J. Javadpour, H.R. Rezaie, M. Erfan, B. Mazinani, and A. Aminian, Ceram. Int. 42, 11259 (2016).

    Google Scholar 

  36. X.Y. Liu, Y.Q. Zhang, X.H. Xia, S.J. Shi, Y. Lu, X.L. Wang, C.D. Gu, and J.P. Tu, J. Power Sources 239, 157 (2013).

    Google Scholar 

  37. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang, and M. Liu, Nano Lett. 12, 321 (2011).

    Google Scholar 

  38. Z. Wang, X. Zhang, Z. Zhang, N. Qiao, Y. Li, and Z. Hao, J. Colloid Interface Sci. 460, 303 (2015).

    Google Scholar 

  39. P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo, and M. Liu, Adv. Funct. Mater. 27, 1702160 (2017).

    Google Scholar 

  40. S. Abouali, M.A. Garakani, Z.L. Xu, and J.K. Kim, Carbon 102, 262 (2016).

    Google Scholar 

  41. E. Mitchell, A. Jimenez, R.K. Gupta, B.K. Gupta, K. Ramasamy, M. Shahabuddin, and S.R. Mishra, New J. Chem. 39, 2181 (2015).

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge Dr. Batoul Hosseinzadeh for her assistance with electrochemical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Kazazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanloo, M., Kazazi, M., Yeganeh, S.E.H. et al. High-Performance Pseudocapacitive Electrode Based on Electrophoretically Deposited NiCo2O4/MWCNTs Nanocomposite on 316L Stainless Steel. JOM 72, 2235–2244 (2020). https://doi.org/10.1007/s11837-020-04082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04082-y

Navigation