Skip to main content
Log in

Effects of Sodium Peroxide Additives on Dielectric Properties and Microwave Roasting Mechanism of Zinc Sulfide Concentrate

  • Heat Transfer Utilization in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microwave technology is being increasingly explored in metallurgical processes. The dielectric properties characterize the action mechanism between electromagnetic energy and minerals. Here, a cavity perturbation method was used to survey the dielectric properties of zinc sulfide concentrate with sodium peroxide additive from 20°C to 600°C at 2.45 GHz. The effects of sodium peroxide additives and temperature on the dielectric properties were investigated. Theoretical analyses showed that the zinc sulfide concentration could be heated quickly when the concentration of sodium peroxide was greater than or equal to 6 wt.%. The heating mechanism is mainly Joule heat loss caused by ionic conduction of sodium peroxide. The heating rate comes from energy conversion and heat conduction at temperatures higher than 400°C. Microwave heating experiments and phase formation verified the correctness of the theoretical analyses. The results provide a better understanding of the microwave roasting mechanism of zinc sulfide concentrate, but also support the use of sodium peroxide as a means to promote thermochemical treatments by microwave irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Chen, M. Li, Z. Qian, Y. Ma, J. Che, and Y. Ma, JOM 68, 2688 (2016).

    Google Scholar 

  2. J.C. Balarini, L.D. Polli, T.L.S. Miranda, R.M.Z. de Castro, and A. Salum, Miner. Eng. 21, 100 (2008).

    Google Scholar 

  3. M. Omran, T. Fabritius, E.P. Heikkinen, G. Chen, and R. Soc, Open Sci. 4, 170710 (2017).

    Google Scholar 

  4. M. Omran, T. Fabritius, G. Chen, and A. He, RSC Adv. 9, 6859 (2019).

    Google Scholar 

  5. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2014).

    Google Scholar 

  6. A.C. Metaxas, Power Eng. J. 9, 237 (1991).

    Google Scholar 

  7. E.T. Thostenson and T.W. Chou, Compos. Part A 30, 1055 (1999).

    Google Scholar 

  8. G. He, S. Li, K. Yang, J. Liu, P. Liu, L. Zhang, and J. Peng, Minerals 7, 31 (2017).

    Google Scholar 

  9. J. Peng and C. Liu, Trans. Nonferrous Met. Soc. China 2, 53 (1992).

    Google Scholar 

  10. J. Peng and C. Liu, Trans. Nonferrous Met. Soc. China 7, 152 (1997).

    Google Scholar 

  11. W. Chen, L. Zhang, J. Peng, S. Yin, A. Ma, K. Yang, S. Li, and F. Xie, Green Process. Synth. 5, 41 (2016).

    Google Scholar 

  12. K. Yang, S. Li, L. Zhang, J. Peng, W. Chen, F. Xie, and A. Ma, Hydrometallurgy 166, 243 (2016).

    Google Scholar 

  13. M. Al-Harahsheh and S.W. Kingman, Hydrometallurgy 73, 189 (2004).

    Google Scholar 

  14. A. Laybourn, J. Katrib, P.A. Palade, T.L. Easun, N.R. Champness, M. Schroder, and S.W. Kingman, Phys. Chem. Chem. Phys. 18, 5419 (2016).

    Google Scholar 

  15. M. Tripathi, J.N. Sahu, P. Ganesan, and T.K. Dey, Fuel 153, 257 (2015).

    Google Scholar 

  16. E. Antunes, M.V. Jacob, G. Brodie, and P.A. Schneider, J. Anal. Appl. Pyrol. 129, 93 (2018).

    Google Scholar 

  17. N. Makul, P. Rattanadecho, and D.K. Agrawal, Renew. Sustain. Energy Rev. 37, 715 (2014).

    Google Scholar 

  18. I. Polaert, N. Benamara, J. Tao, T.H. Vuong, M. Ferrato, and L. Estel, Chem. Eng. Process. 122, 339 (2017).

    Google Scholar 

  19. Y. Zhang, E. Li, J. Zhang, C. Yu, H. Zheng, and G. Guo, Rev. Sci. Instrum. 89, 024701 (2018).

    Google Scholar 

  20. P.D. Muley and D. Boldor, Bioresour. Technol. 127, 165 (2013).

    Google Scholar 

  21. O. Ouni, N. Derbel, N. Jaidane, and M.F. Ruiz-Lopez, Comput. Theor. Chem. 990, 209 (2012).

    Google Scholar 

  22. J.C.M. Garnett, Philos. Trans. R. Soc. 205, 237 (1906).

    Google Scholar 

  23. K. Lichtenecker, Phys. Zeischr. 32, 255 (1931).

    Google Scholar 

  24. D. Braggeman, Ann. Phys. 24, 636 (1935).

    Google Scholar 

  25. S. El Bouazzaoui, M.E. Achour, and C. Brosseau, J. Appl. Phys. 110, 074105 (2011).

    Google Scholar 

  26. L. Jylha and A. Sihvola, J. Phys. D Appl. Phys. 40, 4966 (2007).

    Google Scholar 

  27. J. Sheen, Z.W. Hong, W. Liu, W.L. Mao, and C.A. Chen, Eur. Polym. J. 45, 1316 (2009).

    Google Scholar 

  28. S. Ozturk, F. Kong, R.K. Singh, J.D. Kuzy, C. Li, and S. Trabelsi, J. Food Eng. 228, 128 (2018).

    Google Scholar 

  29. E. Tuncer, S.M. Gubanski, and B. Nettelblad, J. Appl. Phys. 89, 8092 (2001).

    Google Scholar 

  30. I. Krakovsky and V. Myroshnychenko, J. Appl. Phys. 92, 6743 (2002).

    Google Scholar 

  31. J. Guo, D. Zhou, L. Wang, H. Wang, T. Shao, Z.M. Qi, and X. Yao, Dalton Trans. 42, 1483 (2013).

    Google Scholar 

  32. F. Motasemi, A.A. Salema, and M.T. Afzal, Fuel Process. Technol. 131, 370 (2015).

    Google Scholar 

  33. D. Beneroso, A. Albero-Ortiz, J. Monzó-Cabrera, A. Díaz-Morcillo, A. Arenillas, and J.A. Menéndez, Fuel 172, 146 (2016).

    Google Scholar 

  34. Z. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Huang, ISIJ Int. 50, 1590 (2010).

    Google Scholar 

  35. J. Sun, W. Wang, and Q. Yue, Materials 9, 231 (2016).

    Google Scholar 

  36. Z. Peng, X. Lin, X. Wu, J.Y. Hwang, B.G. Kim, Y. Zhang, G. Li, and T. Jiang, Fuel Process. Technol. 150, 58 (2016).

    Google Scholar 

  37. X. Wang, K. Chen, J. Yao, and H. Li, Sci. China Chem. 59, 517 (2016).

    Google Scholar 

  38. S. Yang and D.J. Siegel, Chem. Mater. 27, 3852 (2015).

    Google Scholar 

  39. D.M. Pozar, Microwave engineering, 4th ed. (New York: Wiley, 2005).

    Google Scholar 

  40. K. Ayappa, H. Davis, E. Davis, and J. Gordon, AIChE J. 37, 313 (1991).

    Google Scholar 

  41. N. Castillejo, G.B. Martinez-Hernandez, A.J. Lozano-Guerrero, J.L. Pedreno-Molina, P.A. Gomez, E. Aguayo, F. Artes, and F. Artes-Hernandez, J. Sci. Food Agric. 98, 1863 (2018).

    Google Scholar 

  42. Z. Tang, T. Hong, Y. Liao, F. Chen, J. Ye, H. Zhu, and K. Huang, Appl. Thermal Eng. 131, 642 (2018).

    Google Scholar 

  43. E.R. Bobicki, Q. Liu, and Z. Xu, Miner. Eng. 58, 22 (2014).

    Google Scholar 

  44. R.J. Macana and O.D. Baik, Food Rev. Int. 34, 483 (2017).

    Google Scholar 

  45. H.A. Mintsa, G. Roy, C.T. Nguyen, and D. Doucet, Int. J. Therm. Sci. 48, 363 (2009).

    Google Scholar 

  46. W.D. Kingery, J. Am. Ceram. Soc. 38, 251 (2010).

    Google Scholar 

  47. W. Liu, L. Zhu, J. Han, F. Jiao, and W. Qin, Sci. Rep. 8, 9516 (2018).

    Google Scholar 

  48. B.R. Strohmeier and D.M. Hercules, J. Catal. 86, 266 (1984).

    Google Scholar 

  49. Q. Feng and S. Wen, J. Alloy. Compd. 709, 602 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Program on Key Basic Research Project of China (Grant No. 2014CB643404), National Natural Science Foundation of China (Grant No. U1402274 and 51564033), Key Project of Applied Basic Research of Yunnan Province (Grant No. 2016FA023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhui Peng or Shixing Wang.

Ethics declarations

Conflict of interest

The authors claim no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Qu, W., Zhang, L. et al. Effects of Sodium Peroxide Additives on Dielectric Properties and Microwave Roasting Mechanism of Zinc Sulfide Concentrate. JOM 72, 1920–1926 (2020). https://doi.org/10.1007/s11837-020-04050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04050-6

Navigation