Skip to main content
Log in

Microwave heating characteristics of bulk metallic materials and role of oxides

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, microwave heating characteristics of a few selected bulk metallic materials were studied in the ambient environment using 1400 W input microwave power at 2.45 GHz. Interactions of microwaves with the three target metallic materials—aluminum, copper and stainless steel and their effects were elucidated using the time–temperature profiles monitored during microwave hybrid heating. Metal oxides formed at different stages of the exposure were characterized using scanning electron microscopy and other X-ray-based techniques; role of the oxides in the heating behavior has been explained. The results revealed that heating of the target materials get influenced by the metallic oxides formed on the exposed surfaces of the metallic materials. The oxide layer reduces heat transfer between the susceptor and metallic material at initial stages of heating; however, it assists microwave absorption in the metallic materials depending upon its electromagnetic properties at elevated temperatures during irradiation. The oxide particles act as tiny susceptors initially, which, however, turn into secondary sources of conventional heating in the target material during hybrid heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloy Compd 494(1):175–189

    Article  CAS  Google Scholar 

  2. El Khaled D, Novas N, Gazquez JA, Manzano-Agugliaro F (2017) Microwave dielectric heating: applications on metals processing. Renew Sustain Energy Rev 82:2880–2892

    Article  Google Scholar 

  3. Gupta M, Wong WLE (2005) Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater 52(6):479–483

    Article  CAS  Google Scholar 

  4. Roy R, Agrawal D, Cheng J, Gedevanishvili S (1999) Full sintering of powdered-metal bodies in a microwave field. Nature 399(6737):668–670

    Article  CAS  Google Scholar 

  5. Lee CC, Yoshikawa N, Taniguchi S (2011) Microwave-induced substitutional-combustion reaction of Fe3O4/Al ceramic matrix porous composite. J Mater Sci 46(21):7004–7011. https://doi.org/10.1007/s10853-011-5669-3

    Article  CAS  Google Scholar 

  6. Panda SS, Upadhyaya A, Agrawal D (2007) Effect of heating mode and temperature on sintering of YAG dispersed 434L ferritic stainless steel. J Mater Sci 42(3):966–978. https://doi.org/10.1007/s10853-006-0006-y

    Article  CAS  Google Scholar 

  7. Cauchois R, Saadaoui M, Yakoub A, Inal K, Dubois-Bonvalot B, Fidalgo JC (2012) Impact of variable frequency microwave and rapid thermal sintering on microstructure of inkjet-printed silver nanoparticles. J Mater Sci 47(20):7110–7116. https://doi.org/10.1007/s10853-012-6366-6

    Article  CAS  Google Scholar 

  8. Mahmoud MM, Link G, Thumm M (2015) The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J Alloy Compd 627:231–237

    Article  CAS  Google Scholar 

  9. Leonelli C, Veronesi P, Denti L, Gatto A, Iuliano L (2008) Microwave assisted sintering of green metal parts. J Mater Process Technol 205(1–3):489–496

    Article  CAS  Google Scholar 

  10. Tun KS, Gupta M (2008) Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3 nanocomposite. J Mater Sci 43(13):4503–4511. https://doi.org/10.1007/s10853-008-2649-3

    Article  CAS  Google Scholar 

  11. Wang L, Guo S, Gao J, Yang L, Hu T, Peng J, Hou M, Jiang C (2017) Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit. J Alloy Compd 727:94–99

    Article  CAS  Google Scholar 

  12. Badiger RI, Narendranath S, Srinath MS (2015) Joining of Inconel-625 alloy through microwave hybrid heating and its characterization. J Manuf Process 18:117–123

    Article  Google Scholar 

  13. Kaushal S, Gupta D, Bhowmick H (2017) Investigation of dry sliding wear behavior of Ni–SiC microwave cladding. J Tribol 139(4):041603-1-9. https://doi.org/10.1115/1.4035147

    Article  CAS  Google Scholar 

  14. Mishra RR, Sharma AK (2017) Structure-property correlation in Al–Zn–Mg alloy cast developed through in situ microwave casting. Mater Sci Eng A 688:532–544

    Article  CAS  Google Scholar 

  15. Singh S, Gupta D, Jain V (2016) Novel microwave composite casting process: theory, feasibility and characterization. Mater Des 111:51–59

    Article  CAS  Google Scholar 

  16. Mishra RR, Sharma AK (2016) Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos A Appl Sci Manuf 81:78–97

    Article  CAS  Google Scholar 

  17. Agrawal D (2006, August) Microwave sintering, brazing and melting of metallic materials. In: Sohn international symposium advanced processing of metals and materials volume 4: new, improved and existing technologies: non-ferrous materials extraction and processing, vol. 4, pp 183–192

  18. Ripley EB, Oberhaus JA (2005) Melting and heat treating metals using microwave heating. Ind Heat 72(5):65–70

    Google Scholar 

  19. Chandrasekaran S, Basak T, Ramanathan S (2011) Experimental and theoretical investigation on microwave melting of metals. J Mater Process Technol 211(3):482–487

    Article  CAS  Google Scholar 

  20. Moore AF, Schechter DE, Morrow MS (2006) U.S. Patent No. 7,011,136. U.S. Patent and Trademark Office, Washington, DC

  21. Mishra RR, Sharma AK (2016) On mechanism of in situ microwave casting of aluminium alloy 7039 and cast microstructure. Mater Des 112:97–106

    Article  CAS  Google Scholar 

  22. Lingappa MS, Srinath MS, Amarendra HJ (2017) Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating. Mater Res Express 4(7):076504. https://doi.org/10.1088/2053-1591/aa7aaf

    Article  Google Scholar 

  23. Mishra RR, Sharma AK (2017) On melting characteristics of bulk Al-7039 alloy during in situ microwave casting. Appl Therm Eng 111:660–675

    Article  CAS  Google Scholar 

  24. Gupta M, Wong WLE (2007) Microwave heating. Microw Metals 67:43–63

    Google Scholar 

  25. Sharma AK, Krishnamurthy R (2002) Microwave processing of sprayed alumina composite for enhanced performance. J Eur Ceram Soc 22(16):2849–2860

    Article  CAS  Google Scholar 

  26. Clark DE, Folz DC, West JK (2000) Processing materials with microwave energy. Mater Sci Eng A 287(2):153–158

    Article  Google Scholar 

  27. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  28. Bragg WL, Williams E (1934) The effect of thermal agitation on atomic arrangement in alloys. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 145(855):699–730

    Article  CAS  Google Scholar 

  29. Keil P, Lützenkirchen-Hecht D, Frahm R (2007, February) Investigation of room temperature oxidation of Cu in air by Yoneda-XAFS. In: AIP conference proceedings, vol 882, No. 1. AIP, pp 490–492

  30. Xu CH, Woo CH, Shi SQ (2004) The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct 36(1):31–38

    Article  CAS  Google Scholar 

  31. Sarkar S, Jana PK, Chaudhuri BK, Sakata H (2006) Copper(II) oxide as a giant dielectric material. Appl Phys Lett 89(21):212905. https://doi.org/10.1063/1.2393001

    Article  CAS  Google Scholar 

  32. Cui CY, Cui XG, Ren XD, Qi MJ, Hu JD, Wang YM (2014) Surface oxidation phenomenon and mechanism of AISI 304 stainless steel induced by Nd: YAG pulsed laser. Appl Surf Sci 305:817–824

    Article  CAS  Google Scholar 

  33. Allen GC, Dyke JM, Harris SJ, Morris A (1988) A surface study of the oxidation of type 304L stainless steel at 600 K in air. Oxid Metals 29(5):391–408

    Article  CAS  Google Scholar 

  34. Dube DC, Agrawal D, Agrawal S, Roy R (2007) High temperature dielectric study of Cr2O3 in microwave region. Appl Phys Lett 90(12):124105. https://doi.org/10.1063/1.2716336

    Article  CAS  Google Scholar 

  35. Peng Z, Hwang JY, Park CL, Kim BG, Andriese M, Wang X (2012) Microwave permittivity, permeability, and absorption capability of ferric oxide. ISIJ Int 52(9):1535–1538

    Article  CAS  Google Scholar 

  36. Peng Z, Hwang JY, Andriese M, Zhang Y, Li G, Jiang T (2015) Microwave power absorption characteristics of iron oxides. In: Carpenter JS, Bai C, Escobedo JP, Hwang J-Y, Ikhmayies S, Li B, Li J, Monteiro SN, Peng Z, Zhang M (eds) Characterization of minerals, metals, and materials 2015. Springer, Cham, pp 299–305. https://doi.org/10.1007/978-3-319-48191-3_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurbba Kumar Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.R., Sharma, A.K. Microwave heating characteristics of bulk metallic materials and role of oxides. J Mater Sci 53, 16567–16584 (2018). https://doi.org/10.1007/s10853-018-2771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2771-9

Keywords

Navigation