Skip to main content
Log in

Femtosecond Laser Ablation for Mesoscale Specimen Evaluation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Focused ion beam machining revolutionized the way samples are studied in materials science. The introduction of this tool enabled researchers to break into new frontiers of research. While this method focused on the nanometer length scale, the mesoscale manufacturing of samples has not seen such advances. It remains a challenge to manufacture sample geometries too large for focused ion beam milling yet too small for conventional machining. Femtosecond laser ablation opens this length scale of sample space and allows the fabrication of numerous useful geometries. This paper outlines a state-of-the-art femtosecond laser machining system that can be used for rapid, micro- and mesoscale sample preparation. To illustrate the utility of this system, stress–strain data are presented for single-crystal Cu micropillars and three microscale tensile test specimens prepared from physical-vapor-deposited Cu and Ni foils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ovsiankov, S. Muhleder, J. Torgersen, Z. Li, X.-H. Qin, S.V. Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stamplf, Langmuir 30, 3787 (2014).

    Article  Google Scholar 

  2. A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, Nanoscale 7, 2841 (2015).

    Article  Google Scholar 

  3. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, and R. Gudas, Biofabrication 7, 015015 (2015).

    Article  Google Scholar 

  4. M.J. Pfeifenberger, M. Mangang, S. Wurster, J. Reiser, A. Hohenwarter, W. Pfleging, D. Kiener, and R. Pippan, Mater. Des. 121, 109 (2017).

    Article  Google Scholar 

  5. S. Jakob, M.J. Pfeifenberger, A. Hohenwarter, and R. Pippan, Sci. Technol. Adv. Mater. 18, 574 (2017).

    Article  Google Scholar 

  6. J.G. Gigax, H. Vo, Q. McCulloch, M. Chancey, Y. Wang, S.A. Maloy, N. Li, and P. Hosemann, Scr. Mater. 170, 145 (2019).

    Article  Google Scholar 

  7. T. Voisin, M.D. Grapes, Y. Zhang, N. Lorenzo, J. Ligda, B. Schuster, and T.P. Weihs, Ultramicroscopy 175, 1 (2017).

    Article  Google Scholar 

  8. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986–989 (2004).

    Article  Google Scholar 

  9. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821–1830 (2005).

    Article  Google Scholar 

  10. D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm, Adv. Eng. Mater. 8, 1119 (2006).

    Article  Google Scholar 

  11. D. Kiener, C. Motz, and G. Dehm, Mater. Sci. Eng. A 505, 79 (2009).

    Article  Google Scholar 

  12. J.Y. Kim, D. Jang, and J.R. Greer, Acta Mater. 58, 2355 (2010).

    Article  Google Scholar 

  13. J.S. Weaver, S. Pathak, A. Reichardt, H.T. Vo, S.A. Maloy, P. Hosemann, and N.A. Mara, J. Nucl. Mater. 493, 368 (2017).

    Article  Google Scholar 

  14. D.E.J. Armstrong, C.D. Hardie, J. Gibson, A.J. Bushby, P.D. Edmondson, and S.G. Roberts, J. Nucl. Mater. 462, 374 (2015).

    Article  Google Scholar 

  15. D. Kiener, A.M. Minor, O. Anderoglu, Y. Wang, S.A. Maloy, and P. Hosemann, J. Mater. Res. 27, 2724 (2012).

    Article  Google Scholar 

  16. K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, Adv. Opt. Photon. 7, 684 (2015).

    Article  Google Scholar 

  17. K. Sugioka and Y. Cheng, Light Sci. Appl. 3, e149 (2014).

    Article  Google Scholar 

  18. N.B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials (New York, NY: Springer, 2008), p. xv.

    Google Scholar 

  19. E. Kannatey-Asibu, Principles of Laser Materials Processing (Wiley Series on Processing of Engineering Materials) (Hoboken, NJ: Wiley, 2009), p. xxvi.

    Book  Google Scholar 

  20. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, Light Sci. Appl. 5, e16133 (2016).

    Article  Google Scholar 

  21. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).

    Article  Google Scholar 

  22. A.P. Joglekar, H.H. Liu, E. Meyhofer, G. Mourou, and A.J. Hunt, Proc. Natl. Acad. Sci. U.S.A. 101, 5856 (2004).

    Article  Google Scholar 

  23. S. Hypsh, Adv. Mater. Process. 172, 26 (2014).

    Google Scholar 

  24. C. Feng and J.R. Vazquez de Aldana, Laser Photon. Rev. 8, 251 (2014).

    Article  Google Scholar 

  25. J. Bonse, S. Hohm, S. Kirner, A. Rosenfeld, and J. Kruger, IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).

    Article  Google Scholar 

  26. T. Her, R. Finlay, C. Wu, S. Deliwala, and E. Mazur, Appl. Phys. Lett. 73, 1673 (1998).

    Article  Google Scholar 

  27. J. Thogersen, A. Borowiec, H. Haugen, F. McNeill, and I. Stronach, Appl. Phys. A Mater. Sci. Process. 73, 361 (2001).

    Article  Google Scholar 

  28. S. Barcikowski, A. Hahn, A. Kabashin, and B. Chichkov, Appl. Phys. A Mater. Sci. Process. 87, 47 (2007).

    Article  Google Scholar 

  29. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. Anisimov, Appl. Phys. A Mater. Sci. Process. 79, 767 (2004).

    Article  Google Scholar 

  30. A. Kumar and T. Pollock, J. Appl. Phys. 110, 083114 (2011).

    Article  Google Scholar 

  31. S. Valette, E. Audouard, R.L. Harzic, N. Huot, P. Laporte, and R. Fortunier, Appl. Surf. Sci. 239, 381 (2005).

    Article  Google Scholar 

  32. M.P. Echlin, M.S. Titus, M. Straw, P. Gumbsch, and T.M. Pollock, Acta Mater. 124, 37 (2017).

    Article  Google Scholar 

  33. Y. Dai and M. Victoria, Acta Mater. 45, 3495 (1997).

    Article  Google Scholar 

  34. R. Schäublin, Z. Yao, N. Baluc, and M. Victoria, Philos. Mag. 85, 769 (2005).

    Article  Google Scholar 

  35. D. Kiener, P. Mosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608 (2011).

    Article  Google Scholar 

  36. J.S. Robach, I.M. Robertson, H.-J. Lee, and B.D. Wirth, Acta Mater. 54, 1679 (2006).

    Article  Google Scholar 

  37. Y. Matsukawa, YuN Osetsky, R.E. Stoller, and S.J. Zinkle, J. Nucl. Mater. 351, 285 (2006).

    Article  Google Scholar 

  38. M. Briceño, J. Kacher, and I.M. Robertson, J. Nucl. Mater. 433, 390 (2013).

    Article  Google Scholar 

  39. A. Reichardt, M. Ionescu, J. Davis, L. Edwards, R.P. Harrison, P. Hosemann, and D. Bhattacharyya, Acta Mater. 100, 147 (2015).

    Article  Google Scholar 

  40. C.A. Dennett, K.P. So, A. Kushima, D.L. Buller, K. Hattar, and M.P. Short, Acta Mater. 145, 496 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the US Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program, and the Los Alamos National Laboratory (LANL)/Laboratory Directed Research and Development (LDRD) Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US DOE under Contract DE-AC52-06NA25396. The authors wish to acknowledge and thank the Center for Integrated Nanotechnology for providing the infrastructure for this work and development. Further, the authors would like to acknowledge the DOE-NEUP Program # DE-NE0008767 and the DOE NEUP infrastructure program for providing the resources for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. McCulloch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCulloch, Q., Gigax, J.G. & Hosemann, P. Femtosecond Laser Ablation for Mesoscale Specimen Evaluation. JOM 72, 1694–1702 (2020). https://doi.org/10.1007/s11837-020-04045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04045-3

Navigation