Skip to main content
Log in

Fatigue Performance of Additively Manufactured Ti-6Al-4V: Surface Condition vs. Internal Defects

  • The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Grade 23 Ti-6Al-4V additively manufactured by selective electron beam melting (SEBM) has found important clinical applications as bone implants since 2007. In general, an as-built rough surface is desirable for bone ingrowth, but at the expense of fatigue performance. This study assesses the relative influence of the surface condition and internal defects on the fatigue performance of SEBM Ti-6Al-4V. Chemical etching, standard machining, and precision machining are used to improve the as-built surface condition, while a significant two-step hot isostatic pressing (HIP) treatment is employed to heal internal defects. Detailed assessment of the fatigue performance of these samples with different surface and internal conditions leads to a range of informative observations. The fatigue results are superimposed on a well-established fatigue diagram for Ti-6Al-4V and further presented in a fatigue-processing condition diagram. It is shown that HIP is necessary only when the surface finish is sufficient and when there are no surface defects. Improving the surface condition is far more important than applying post-SEBM HIP. For example, as-built samples with machined surfaces of Ra = 0.05 µm and Rz = 0.45 µm without HIP exhibited much better fatigue performance than as-built samples with machined surfaces of Ra = 0.13 µm and Rz = 0.95 µm plus HIP. This study provides a quantitative basis for the design and application of SEBM Ti-6Al-4V as bone implants in terms of fatigue performance, as well as for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.Y. Sun, S. Gulizia, D. Fraser, C.H. Oh, S.L. Lu, and M. Qian, JOM 69, 1836 (2017).

    Google Scholar 

  2. V. Chastand, P. Quaegebeur, W. Maia, and E. Charkaluk, Mater. Charact. 143, 76 (2018).

    Google Scholar 

  3. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. A 41, 3422 (2010).

    Google Scholar 

  4. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Mater. Charact. 60, 96 (2009).

    Google Scholar 

  5. K.S. Chan, M. Koike, R.L. Mason, and T. Okabe, Metall. Mater. Trans. A 44, 1010 (2013).

    Google Scholar 

  6. N. Hrabe, T. Gnäupel-Herold, and T. Quinn, Int. J. Fatigue 94, 202 (2017).

    Google Scholar 

  7. H.P. Tang, J. Wang, C.N. Song, N. Liu, L. Jia, J. Elambasseril, and M. Qian, JOM 69, 466 (2017).

    Google Scholar 

  8. J. Elambasseril, S.L. Lu, Y.P. Ning, N. Liu, J. Wang, M. Brandt, H.P. Tang, and M. Qian, Mater. Sci. Eng. A 761, 138031 (2019).

    Google Scholar 

  9. X.Z. Zhang, M. Leary, H.P. Tang, T. Song, and M. Qian, Curr. Opin. Solid State Mater. Sci. 22, 75 (2018).

    Google Scholar 

  10. N. Gui, W. Xu, D.E. Myers, R. Shukla, H.P. Tang, and M. Qian, Biomater. Sci. 6, 250 (2018).

    Google Scholar 

  11. C. de Formanoir, S. Michotte, O. Rigo, L. Germain, and S. Godet, Mater. Sci. Eng. A 652, 105 (2016).

    Google Scholar 

  12. W. Everhart, E. Sawyer, T. Neidt, J. Dinardo, and B. Brown, J. Mater. Sci. 51, 3836 (2016).

    Google Scholar 

  13. S. Palanivel, A.K. Dutt, E.J. Faierson, and R.S. Mishra, Mater. Sci. Eng. A 654, 39 (2016).

    Google Scholar 

  14. Y.Y. Sun, S. Gulizia, C.H. Oh, D. Fraser, M. Leary, Y.F. Yang, and M. Qian, JOM 68, 791 (2016).

    Google Scholar 

  15. D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Int. J. Fatigue 94, 211 (2017).

    Google Scholar 

  16. E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Phys. Proc. 56, 371 (2014).

    Google Scholar 

  17. D. Greitemeier, C.D. Donne, F. Syassen, J. Eufinger, and T. Melz, Mater. Sci. Technol. 32, 629 (2016).

    Google Scholar 

  18. M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, and C. Potrich, J. Mech. Behav. Biomed. Mater. 71, 295 (2017).

    Google Scholar 

  19. M. Kahlin, H. Ansell, and J.J. Moverare, Int. J. Fatigue 101, 51 (2017).

    Google Scholar 

  20. S. Bagehorn, J. Wehr, and H.J. Maier, Int. J. Fatigue 102, 135 (2017).

    Google Scholar 

  21. A. Uriondo, M. Esperon-Miguez, and S. Perinpanayagam, Proc. Inst. Mech. Eng. Part. 229, 2132 (2015).

    Google Scholar 

  22. M. Kahlin, H. Ansell, and J.J. Moverare, Int. J. Fatigue 103, 353 (2017).

    Google Scholar 

  23. H. Soyama and D. Sanders, JOM 71, 4311 (2019).

    Google Scholar 

  24. P.E. Carrion, A. Soltani-Tehrani, N. Phan, and N. Shamsaei, JOM 71, 963 (2019).

    Google Scholar 

  25. F. Cao, T. Zhang, M.A. Ryder, and D.A. Lados, JOM 70, 349 (2018).

    Google Scholar 

  26. B. Torries and N. Shamsaei, JOM 69, 2698 (2017).

    Google Scholar 

  27. P. Nandwana, M.M. Kirka, V.C. Paquit, S. Yoder, and R.R. Dehoff, JOM 70, 1686 (2018).

    Google Scholar 

  28. R. Molaei, A. Fatemi, and N. Phan, Int. J. Fatigue 117, 352 (2018).

    Google Scholar 

  29. J.W. Pegues, S. Shao, N. Shamsaei, N. Sanaei, A. Fatemi, D.H. Warner, P. Li, and N. Phan, Int. J. Fatigue 132, 105358 (2019).

    Google Scholar 

  30. P. Li, D.H. Warner, J.W. Pegues, M.D. Roach, N. Shamsaei, and N. Phan, Int. J. Fatigue 120, 342 (2019).

    Google Scholar 

  31. R. Molaei, A. Fatemi, N. Sanaei, J. Pegues, N. Shamsaei, S. Shao, P. Li, D.H. Warner, and N. Phan, Int. J. Fatigue 132, 105363 (2019).

    Google Scholar 

  32. Y.R. Choi, S.D. Sun, Q. Liu, M. Brandt, and M. Qian, Int. J. Fatigue 130, 105236 (2020).

    Google Scholar 

  33. H. Masuo, Y. Tanaka, S. Morokoshi, H. Yagura, T. Uchida, Y. Yamamoto, and Y. Murakami, Int. J. Fatigue 117, 163 (2018).

    Google Scholar 

  34. H. Yu, F. Li, Z. Wang, and X. Zeng, Int. J. Fatigue 120, 175 (2019).

    Google Scholar 

  35. P. Zioupos, M. Gresle, and K. Winwood, J. Biomed. Mater. Res. Part A 86, 627 (2008).

    Google Scholar 

  36. S.A.V. Swanson, M.A.R. Freeman, and W.H. Day, Med. Bio. Eng. 9, 23 (1971).

    Google Scholar 

  37. S.H. Teoh, Int. J. Fatigue 22, 825 (2000).

    Google Scholar 

  38. A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, and C.E. Duty, Int. J. Fatigue 119, 173 (2019).

    Google Scholar 

  39. S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Scr. Mater. 122, 72 (2016).

    Google Scholar 

  40. M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (ASM International: Cleveland, 2000), pp. 39–45.

    Google Scholar 

  41. F. Cao and K.S.R. Chandran, JOM 68, 735 (2016).

    Google Scholar 

  42. D. Eylon, J. Mater. Sci. 14, 1914 (1979).

    Google Scholar 

  43. A.L. Pilchak and J.C. Williams, Metall. Mater. Trans. A 40, 2603 (2009).

    Google Scholar 

  44. R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie, Metall. Mater. Trans. A 33, 899 (2002).

    Google Scholar 

  45. P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, 061016 (2013).

    Google Scholar 

  46. H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, Addit. Manuf. 1–4, 87 (2014).

    Google Scholar 

  47. P. Edwards and M. Ramulu, Fatigue Fract. Eng. Mater. Struct. 38, 1228 (2015).

    Google Scholar 

  48. R. Boyer, G. Welsch, and E. Collings, Materials Properties Handbook: Titanium Alloys (ASM international: Cleveland, 1994), pp. 483–636.

    Google Scholar 

  49. Z. Xu, W. Wen, and T. Zhai, Metall. Mater. Trans. A 43, 2763 (2012).

    Google Scholar 

Download references

Acknowledgements

The project was funded by the Australian Research Council (ARC) through DP150104719. Y.Y.S. acknowledges the support of the China Scholarship Council (CSC) for a CSC scholarship and an RMIT research scholarship. In addition, the authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University’s Microscopy & Microanalysis Facility, a linked laboratory of the Microscopy Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y.Y., Lu, S.L., Gulizia, S. et al. Fatigue Performance of Additively Manufactured Ti-6Al-4V: Surface Condition vs. Internal Defects. JOM 72, 1022–1030 (2020). https://doi.org/10.1007/s11837-020-04025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04025-7

Navigation