Skip to main content
Log in

Optimization of Spark Plasma Sintering Parameters Using the Taguchi Method for Developing Mg-Based Composites

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A magnesium-based metal matrix composite incorporated with 2.5 wt.% TiB2 has been fabricated using spark plasma sintering for the first time. The Taguchi design approach was used to analyze the significant influences of sintering parameters such as the temperature, pressure, and time on the physical and mechanical properties of Mg-based composites. Analysis of variance was used to investigate the effect of each sintering parameter. X-ray diffraction and field-emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy were used for structure and microstructure analysis. Rockwell hardness (HR) and Vickers hardness (HV) were used to evaluate the mechanical properties of the composite. The results showed that, in the case of microhardness, all the sintering parameters were controlling factors, and the sintering temperature was the most significant factor. The maximum values obtained for the densification, Rockwell hardness, and Vickers hardness were 100%, 62.18 HR, and 58.6 HV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. del Campo, B. Savoini, A. Muñoz, M.A. Monge, and G. Garcés, J. Mech. Behav. Biomed. Mater. 39, 238 (2014).

    Google Scholar 

  2. E.P. DeGarmo, J.T. Black, R.A. Kohser, and B.E. Klamecki, Materials and Process in Manufacturing, 9th ed. (Upper Saddle River: Prentice Hall, 1997).

    Google Scholar 

  3. G. Garcés, M. Rodríguez, P. Pérez, and P. Adeva, Compos. Sci. Technol. 67, 632 (2007).

    Google Scholar 

  4. M. Ali, M. Hussein, and N. Al-Aqeeli, J. Alloys Compd. 792, 1162 (2019).

    Google Scholar 

  5. S.F. Hassan and M. Gupta, J. Alloys Compd. 345, 246 (2002).

    Google Scholar 

  6. X.N. Gu, X. Wang, N. Li, L. Li, Y.F. Zheng, and X. Miao, J. Biomed. Mater. Res. Part B Appl. Biomater. 99B, 127 (2011).

    Google Scholar 

  7. M. Rashad, F. Pan, M. Asif, J. She, and A. Ullah, J. Magnes. Alloys 3, 1 (2015).

    Google Scholar 

  8. G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Mater. Des. 65, 104 (2015).

    Google Scholar 

  9. S. Sankaranarayanan, U. Pranav Nayak, R.K. Sabat, S. Suwas, A. Almajid, and M. Gupta, J. Alloys Compd. 615, 211 (2014).

    Google Scholar 

  10. S.F. Hassan and M. Gupta, Mater. Sci. Eng. A 392, 163 (2005).

    Google Scholar 

  11. S.F. Hassan and M. Gupta, J. Compos. Mater. 41, 2533 (2007).

    Google Scholar 

  12. G.K. Meenashisundaram, S. Seetharaman, and M. Gupta, Mater. Charact. 94, 178 (2014).

    Google Scholar 

  13. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Google Scholar 

  14. W.N. Tang, S.S. Park, and B.S. You, Mater. Des. 32, 3537 (2011).

    Google Scholar 

  15. F. Barrère, T.A. Mahmood, K. de Groot, and C.A. van Blitterswijk, Mater. Sci. Eng. R Rep. 59, 38 (2008).

    Google Scholar 

  16. S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, J. Mech. Behav. Biomed. Mater. 78, 442 (2018).

    Google Scholar 

  17. G. Eddy Jai Poinern, S. Brundavanam, and D. Fawcett, Am. J. Biomed. Eng. 2, 218 (2013).

    Google Scholar 

  18. M. Hussein, A. Mohamed, and N. Al-Aqeeli, Materials 8, 2749 (2015).

    Google Scholar 

  19. S. Kannan, A. Balamurugan, and S. Rajeswari, Mater. Lett. 57, 2382 (2003).

    Google Scholar 

  20. M. Niinomi, Metall. Mater. Trans. A 33, 477 (2002).

    Google Scholar 

  21. L. Li, J. Gao, and Y. Wang, Surf. Coat. Technol. 185, 92 (2004).

    Google Scholar 

  22. T.H.D. Ong, N. Yu, G.K. Meenashisundaram, B. Schaller, and M. Gupta, Mater. Sci. Eng. C 78, 647 (2017).

    Google Scholar 

  23. J. Umeda, M. Kawakami, K. Kondoh, E.-S. Ayman, and H. Imai, Mater. Chem. Phys. 123, 649 (2010).

    Google Scholar 

  24. M.H. Nai, J. Wei, and M. Gupta, Mater. Des. 60, 490 (2014).

    Google Scholar 

  25. C. Ma, L. Chen, J. Xu, A. Fehrenbacher, Y. Li, F.E. Pfefferkorn, N.A. Duffie, J. Zheng, and X. Li, J. Biomed. Mater. Res. Part B Appl. Biomater. 101B, 870 (2013).

    Google Scholar 

  26. H. Khoshzaban Khosroshahi, F. Fereshteh Saniee, and H.R. Abedi, Mater. Sci. Eng. A 595, 284 (2014).

    Google Scholar 

  27. A.K. Khanra, H.C. Jung, K.S. Hong, and K.S. Shin, Mater. Sci. Eng. A 527, 6283 (2010).

    Google Scholar 

  28. B. Chen, K.-Y. Yin, T.-F. Lu, B.-Y. Sun, Q. Dong, J.-X. Zheng, C. Lu, and Z.-C. Li, J. Mater. Sci. Technol. 32, 858 (2016).

    Google Scholar 

  29. E. Mohammadi Zahrani and M.H. Fathi, Ceram. Int. 35, 2311 (2009).

    Google Scholar 

  30. C.A. Stüpp, G. Szakács, C.L. Mendis, F. Gensch, S. Müller, F. Feyerabend, D. Hotza, M.C. Fredel, and N. Hort, Magnesium Technology (Cham: Springer, 2015), pp. 425–429.

    Google Scholar 

  31. M.H. Fathi and E.M. Zahrani, J. Alloys Compd. 475, 408 (2009).

    Google Scholar 

  32. M.A. Hussein, C. Suryanarayana, M.K. Arumugam, and N. Al-Aqeeli, Mater. Des. 83, 344 (2015).

    Google Scholar 

  33. Y.F. Zheng, X.N. Gu, Y.L. Xi, and D.L. Chai, Acta Biomater. 6, 1783 (2010).

    Google Scholar 

  34. V.A.R. Henriques, E.T. Galvani, S.L.G. Petroni, M.S.M. Paula, and T.G. Lemos, J. Mater. Sci. 45, 5844 (2010).

    Google Scholar 

  35. S.F. Hassan, Arch. Metall. Mater. 61, 1521 (2016).

    Google Scholar 

  36. P.S. Kumar, K. Ponappa, M. Udhayasankar, and B. Aravindkumar, Arch. Metall. Mater. 62, 1851 (2017).

    Google Scholar 

  37. H. Cay, H. Xu, and Q. Li, Mater. Sci. Eng. A 574, 137 (2013).

    Google Scholar 

  38. M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, and J. Mao, J. Magnes. Alloys 1, 242 (2013).

    Google Scholar 

  39. S.F. Hassan and M. Gupta, Compos. Struct. 72, 19 (2006).

    Google Scholar 

  40. M. Oghbaei and O. Mirzaee, J. Alloys Compd. 494, 175 (2010).

    Google Scholar 

  41. M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Mater. Des. 87, 693 (2015).

    Google Scholar 

  42. D. Salamon and Z. Shen, Mater. Sci. Eng. A 475, 105 (2008).

    Google Scholar 

  43. B. Yaman and H. Mandal, Mater. Lett. 63, 1041 (2009).

    Google Scholar 

  44. N. Gao, J. Li, D. Zhang, and Y. Miyamoto, J. Eur. Ceram. Soc. 22, 2365 (2002).

    Google Scholar 

  45. M. Omori, Mater. Sci. Eng. A 287, 183 (2000).

    Google Scholar 

  46. N.Q. Cao, D.N. Pham, N. Kai, H.V. Dinh, S. Hiromoto, and E. Kobayashi, Metals (Basel) 7, 358 (2017).

    Google Scholar 

  47. T. Chartier and A. Badev, Handbook of Advanced Ceramics: Chapter 6.5. Rapid Prototyping of Ceramics (Amsterdam: Elsevier, 2013).

    Google Scholar 

  48. K. Tee, L. Lu, and M.O. Lai, J. Mater. Process. Technol. 89–90, 513 (1999).

    Google Scholar 

  49. M. Wong and Y.C. Lee, Surf. Coat. Technol. 120–121, 194 (1999).

    Google Scholar 

  50. H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, and F. Zhao, Mater. Lett. 58, 3509 (2004).

    Google Scholar 

  51. J. Davim and P. Aveiro, Design of Experiments in Production Engineering (Cham: Springer, 2016).

    Google Scholar 

  52. S. Mavruz and R. Oğulata, Fibres Text. East. Eur. 18, 78 (2010).

    Google Scholar 

  53. Ö. Küçük, T. Elfarah, S. Islak, and C. Özorak, Metals (Basel) 7, 352 (2017).

    Google Scholar 

  54. P. Sahoo, A. Pratap, and A. Bandyopadhyay, Int. J. Ind. Eng. Comput. 8, 385 (2017).

    Google Scholar 

  55. Z. Xiuqing, W. Haowei, L. Lihua, T. Xinying, and M. Naiheng, Mater. Lett. 59, 2105 (2005).

    Google Scholar 

  56. N. Stanford, D. Atwell, A. Beer, C. Davies, and M.R. Barnett, Scr. Mater. 59, 772 (2008).

    Google Scholar 

  57. Y. Xu, F. Gensch, Z. Ren, K.U. Kainer, and N. Hort, Prog. Nat. Sci. Mater. Int. 28, 724 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the King Fahd University of Petroleum and Minerals (KFUPM) and Center of Research Excellence in Corrosion for providing the support to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hussein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Hussein, M.A. & Al-Aqeeli, N. Optimization of Spark Plasma Sintering Parameters Using the Taguchi Method for Developing Mg-Based Composites. JOM 72, 1186–1194 (2020). https://doi.org/10.1007/s11837-019-03997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03997-5

Navigation