Skip to main content
Log in

Unified Effect of Dispersed Xe on the Thermal Conductivity of UO2 Predicted by Three Interatomic Potentials

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermal conductivity is a critical fuel performance property of uranium dioxide (UO2)-based nuclear fuels. Numerous studies have shown that xenon (Xe) fission gas plays a major role in fuel thermal conductivity degradation. It has also been shown that dispersed Xe atoms can cause a stronger phonon-scattering effect than their clustered form. In this work, molecular dynamics simulations are conducted to study the dispersed Xe-induced thermal conductivity reduction using three different interatomic potentials. It is found that although these potentials result in significant discrepancies in the absolute thermal conductivity values, the normalized values are very similar at a wide range of temperatures and Xe concentrations. By integrating this unified effect into the experimentally measured thermal conductivities, a new analytical model is developed to predict the realistic thermal conductivities of UO2 at different dispersed Xe concentrations and temperatures. Using this new model, the critical Xe concentration that offsets the grain boundary Kapitza resistance effect in a high burnup structure is revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Staicu, Comprehensive Nuclear Materials, ed. R.J.M. Konings (Oxford: Elsevier, 2012), p. 439.

    Google Scholar 

  2. C. Ronchi, M. Sheindlin, D. Staicu, and M. Kinoshita, J. Nucl. Mater. 327, 58 (2004).

    Google Scholar 

  3. D.D. Baron and L. Hallstadius, Comprehensive Nuclear Materials, ed. R.J.M. Konings (Oxford: Elsevier, 2012), p. 481.

    Google Scholar 

  4. J.K. Fink, J. Nucl. Mater. 279, 1 (2000).

    Google Scholar 

  5. V.V. Rondinella and T. Wiss, Mater. Today 13, 24 (2010).

    Google Scholar 

  6. K. Une, K. Nogita, S. Kashibe, and M. Imamura, J. Nucl. Mater. 188, 65 (1992).

    Google Scholar 

  7. T. Wiss, Comprehensive Nuclear Materials, ed. R.J.M. Konings (Oxford: Elsevier, 2012), p. 465.

    Google Scholar 

  8. H. Stehle, J. Nucl. Mater. 153, 3 (1988).

    Google Scholar 

  9. X.Y. Liu, M.W.D. Cooper, K.J. McClellan, J.C. Lashley, D.D. Byler, B.D.C. Bell, R.W. Grimes, C.R. Stanek, and D.A. Andersson, Phys. Rev. Appl. 6, 044015 (2016).

    Google Scholar 

  10. K. Une, M. Hirai, K. Nogita, T. Hosokawa, Y. Suzawa, S. Shimizu, and Y. Etoh, J. Nucl. Mater. 278, 54 (2000).

    Google Scholar 

  11. C.T. Walker, D. Staicu, M. Sheindlin, D. Papaioannou, W. Goll, and F. Sontheimer, J. Nucl. Mater. 350, 19 (2006).

    Google Scholar 

  12. X.M. Bai, M.R. Tonks, Y.F. Zhang, and J.D. Hales, J. Nucl. Mater. 470, 208 (2016).

    Google Scholar 

  13. S. Nichenko and D. Staicu, J. Nucl. Mater. 433, 297 (2013).

    Google Scholar 

  14. S. Yamasaki, T. Arima, K. Idemitsu, and Y. Inagaki, Int. J. Thermophys. 28, 661 (2007).

    Google Scholar 

  15. X.-M. Bai, A. El-Azab, J. Yu, and T.R. Allen, J. Phys.: Condens. Matter 25, 015003 (2012).

    Google Scholar 

  16. X.-M. Bai, H. Ke, Y. Zhang, and B.W. Spencer, J. Nucl. Mater. 495, 442 (2017).

    Google Scholar 

  17. M.R. Tonks, X.-Y. Liu, D. Andersson, D. Perez, A. Chernatynskiy, G. Pastore, C.R. Stanek, and R. Williamson, J. Nucl. Mater. 469, 89 (2016).

    Google Scholar 

  18. C.W. Lee, A. Chernatynskiy, P. Shukla, R.E. Stoller, S.B. Sinnott, and S.R. Phillpot, J. Nucl. Mater. 456, 253 (2015).

    Google Scholar 

  19. W. Chen, M.W.D. Cooper, Z. Xiao, D.A. Andersson, and X.-M. Bai, J. Mater. Res. 34, 2295 (2019).

    Google Scholar 

  20. B. Deng, A. Chernatynskiy, P. Shukla, S.B. Sinnott, and S.R. Phillpot, J. Nucl. Mater. 434, 203 (2013).

    Google Scholar 

  21. T. Chen, D. Chen, B.H. Sencer, and L. Shao, J. Nucl. Mater. 452, 364 (2014).

    Google Scholar 

  22. A. Chernatynskiy, C. Flint, S.B. Sinnott, and S.R. Phillpot, J. Mater. Sci. 47, 7693 (2012).

    Google Scholar 

  23. R.J. White, J. Nucl. Mater. 325, 61 (2004).

    Google Scholar 

  24. A.D. Andersson, P. Garcia, X.Y. Liu, G. Pastore, M. Tonks, P. Millett, B. Dorado, D.R. Gaston, D. Andrs, R.L. Williamson, R.C. Martineau, B.P. Uberuaga, and C.R. Stanek, J. Nucl. Mater. 451, 225 (2014).

    Google Scholar 

  25. A.D. Andersson, Los Alamos National Laboratory Report (LA-UR-15-28086), 2016.

  26. E. Moore, L.R. Corrales, T. Desai, and R. Devanathan, J. Nucl. Mater. 419, 140 (2011).

    Google Scholar 

  27. M.R. Tonks, D. Gaston, P.C. Millett, D. Andrs, and P. Talbot, Comput. Mater. Sci. 51, 20 (2012).

    Google Scholar 

  28. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Google Scholar 

  29. G. Busker, A. Chroneos, R.W. Grimes, and I.W. Chen, J. Am. Ceram. Soc. 82, 1553 (1999).

    Google Scholar 

  30. C.B. Basak, A.K. Sengupta, and H.S. Kamath, J. Alloys Compd. 360, 210 (2003).

    Google Scholar 

  31. M.W.D. Cooper, M.J.D. Rushton, and R.W. Grimes, J. Phys.: Condens. Matter 26, 105401 (2014).

    Google Scholar 

  32. M.W.D. Cooper, N. Kuganathan, P.A. Burr, M.J.D. Rushton, R.W. Grimes, C.R. Stanek, and D.A. Andersson, J. Phys.: Condens. Matter 28, 405401 (2016).

    Google Scholar 

  33. R.W. Grimes and C.R.A. Catlow, Philos. Trans. R. Soc. A 335, 609 (1991).

    Google Scholar 

  34. H.Y. Geng, Y. Chen, Y. Kaneta, and M. Kinoshita, J. Alloys Compd. 457, 465 (2008).

    Google Scholar 

  35. K.T. Tang and J.P. Toennies, J. Chem. Phys. 118, 4976 (2003).

    Google Scholar 

  36. P.K. Schelling, S.R. Phillpot, and P. Keblinski, Phys. Rev. B 65, 144306 (2002).

    Google Scholar 

  37. K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X.Y. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. McClellan, B.P. Uberuaga, B.L. Scott, and D.A. Andersson, Nat. Commun. 5, 4551 (2014).

    Google Scholar 

  38. A. Chernatynskiy and S.R. Phillpot, Phys. Rev. B 82, 134301 (2010).

    Google Scholar 

  39. C.I. Maxwell and J. Pencer, Ann. Nucl. Energy 131, 317 (2019).

    Google Scholar 

  40. R. Brandt and G. Neuer, J. Non-Equilib. Thermodyn. 1, 3 (1976).

    Google Scholar 

  41. H.-S. Yang, G.R. Bai, L.J. Thompson, and J.A. Eastman, Acta Mater. 50, 2309 (2002).

    Google Scholar 

  42. K. Pietrak and T. Wiśniewski, J. Power Technol. 95, 14 (2015).

    Google Scholar 

  43. P. Nikolopoulos and G. Ondracek, J. Nucl. Mater. 114, 231 (1983).

    Google Scholar 

  44. C. Walker, J. Anal. At. Spectrom. 14, 447 (1999).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support by the US Department of Energy, Nuclear Energy University Program (Award # DE-NE0008279, through the University of Florida), and the Advanced Research Computing at Virginia Tech. X.M. Bai also thanks the Faculty Joint Appointment Program at Idaho National Laboratory. The manuscript has been co-authored by Battelle Energy Alliance, LLC, under contract no. DE-AC07-05ID14517 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of the manuscript, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Bai, XM. Unified Effect of Dispersed Xe on the Thermal Conductivity of UO2 Predicted by Three Interatomic Potentials. JOM 72, 1710–1718 (2020). https://doi.org/10.1007/s11837-019-03985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03985-9

Navigation