Skip to main content
Log in

Analysis of Burnup effects and Its Integrity Assessment in the Interim of Irradiation with Molecular Dynamics

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Burnups can cause major structural changes in the edge of the fuel rod and a general degradation of the thermal conductivity. In irradiated mixed oxide fuels of UO2, PuO2 with NpO2 as fission products (FP) various chemical states depending on the conditions of the fuel is developed. This work, we firstly applied the MD relation to obtain the thermal conductivity of UO2, PuO2, and (U, Pu) O2 in temperature range of 300–2000 K. Lattice parameter, Burnup and the thermal conductivity were then calculated for specified UO2 and PuO2. This calculation relates the degradation of thermal conductivity with a number of pores and increasing temperature. Finally, the migration energy barrier and the recovery energies of the obstruction type defects were calculated with molecular dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ronchi C., and Hiernaut J. P. 2004. “Helium Diffusion in Uranium and Plutonium Oxides.” Journal of Nuclear Materials. https://doi.org/10.1016/j.jnucmat.2003.10.006.

  2. Lu Yong, Yu Yang, Fawei Zheng, Tian Wang Bao, and Ping. Zhang 2013. “Electronic, Mechanical, and Thermodynamic Properties of Americium Dioxide.” Journal of Nuclear Materials. https://doi.org/10.1016/j.jnucmat.2013.06.043.

  3. Kunihisa Nakajima, Serizawa Hiroyuki, Shirasu Noriko, Haga Yoshinori, and Arai Yasuo. 2011. “The Solubility and Diffusion Coefficient of Helium in Uranium Dioxide.” Journal of Nuclear Materials. https://doi.org/10.1016/j.jnucmat.2011.08.045.

  4. Li Huang, Wang Yilin, and Dai Xi. 2012. “Pressure-Driven Orbital Selective Insulator-to-Metal Transition and Spin-State Crossover in Cubic CoO.” Physical Review B — Condensed Matter and Materials Physics. https://doi.org/10.1103/PhysRevB.85.245110.

  5. Pipon Y., C. Raepsaet, D. Roudil, and H. Khodja 2009. “The Use of NRA to Study Thermal Diffusion of Helium in (U, Pu)O2.” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. https://doi.org/10.1016/j.nimb.2009.03.025.

  6. Veshchunov M. S., R. Dubourg, V. D. Ozrin, V. E. Shestak, and V. I. Tarasov 2007. “Mechanistic Modelling of Urania Fuel Evolution and Fission Product Migration during 320 Irradiation and Heating.” Journal of Nuclear Materials. 321 https://doi.org/10.1016/j.jnucmat.2007.01.081.

  7. Gauld I. C., and U. Mertyurek. 2019. “Validation of BWR Spent Nuclear Fuel Isotopic Predictions with Applications to Burnup Credit.” Nuclear Engineering and Design. https://doi.org/10.1016/j.nucengdes.2019.01.026.

  8. Basak C. B., A. K. Sengupta, and H. S. Kamath. 2003. “Classical Molecular Dynamics Simulation of UO2 to Predict Thermophysical Properties.” Journal of Alloys and Compounds. https://doi.org/10.1016/S0925-8388(03)00350-5.

  9. Jackson R. A., and C. R.A. Catlow. 1985. “Trapping and Solution of Fission Xe in UO2. Part 1. Single Gas Atoms and Solution from Underpressurized Bubbles.” Journal of Nuclear Materials. https://doi.org/10.1016/0022-3115(85)90351-4.

  10. Morelon N. D., D. Ghaleb, J. M. Delaye, and L. Van Brutzel. 2003. “A New Empirical Potential for Simulating the Formation of Defects and Their Mobility in Uranium Dioxide.”Philosophical Magazine. https://doi.org/10.1080/1478643031000091454.

  11. Geng Hua Y., Hong X. Song, K. Jin, S. K. Xiang, and Q. Wu. 2011. “First-Principles Study on Oxidation Effects in Uranium Oxides and High-Pressure High-Temperature Behavior of Point Defects in Uranium Dioxide.” Physical Review B — Condensed Matter and Materials Physics. https://doi.org/10.1103/PhysRevB.84.174115.

  12. Nicoll, S., Hj Matzke, and C. R.A. Catlow. 1995. A Computational Study of the Effect of Xe Concentration on the Behaviour of Single Xe Atoms in UO2.” Journal of Nuclear Materials https://doi.org/10.1016/0022-3115(95)00131-X

  13. Govers K., S. Lemehov, M. Hou, and M. Verwerft. 2009. “Molecular Dynamics Simulation of Helium and Oxygen Diffusion in UO2±X.” Journal of Nuclear Materials. https://doi.org/10.1016/j.jnucmat.2009.10.043

  14. Miekeley W., and F. W. Felix. 1972. “Effect of Stoichiometry on Diffusion of Xenon in UO2.” Journal of Nuclear Materials. https://doi.org/10.1016/0022-3115(72)90080-3.

  15. Nogita K., and K. Une. 1995. “Irradiation-Induced Recrystallization in High Burnup UO2 Fuel.” Journal of Nuclear Materials. https://doi.org/10.1016/0022-3115(95)00123-9.

  16. Rondinella Vincenzo V., and Thierry Wiss. 2010. “The High Burn-up Structure in Nuclear Fuel.” Materials Today. https://doi.org/10.1016/S1369-7021(10)70221-2.

  17. Kazuhiro Yamada, Kurosaki Ken, Uno Msayoshi, and Yamanaka Shinsuke. 2000. “Evaluation of Thermal Properties of Uranium Dioxide by Molecular Dynamics.” Journal of Alloys and Compounds. https://doi.org/10.1016/S0925-8388(00)00806-9.

  18. Tatsumi Arima, Yamasaki Sho, Inagaki Yaohiro, and Idemitsu Kazuya. 2005. “Evaluation of Thermal Properties of UO2 and PuO2 by Equilibrium Molecular Dynamics Simulations from 300 to 2000 K.” Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2005.04.003.

  19. Tatsumi Arima, Yamasaki Sho, Inagaki Yaohiro, and Idemitsu Kazuya. 2006. “Evaluation of Thermal Conductivity of Hypostoichiometric (U, Pu)O2-x Solid Solution by Molecular Dynamics Simulation at Temperatures up to 2000 K.” Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2005.08.003.

  20. Nichenko S., and D. Staicu. 2014. “Thermal Conductivity of Porous UO2: Molecular Dynamics Study.” Journal of Nuclear Materials. 299 https://doi.org/10.1016/j.jnucmat.2014.08.009.

  21. Vazhappilly Tijo, Pathak Arup Kumar. 2019. “Theoretical study on the mechanical and thermal properties of uranium dioxide doped with lanthanide fission products.” Journal of Nuclear Materials. 519 https://doi.org/10.1016/j.jnucmat.2019.03.032

  22. Mingjie Wan, Zhang Li, Du Jiguang, Huang Duohui, Wang Lili, and Jiang Gang. 2012. “The MD Simulation of Thermal Properties of Plutonium Dioxide.” Physica B: Condensed Matter. https://doi.org/10.1016/j.physb.2012.08.010.

  23. Carbajo Juan J, Yoder Gradyon L, Popov Sergey G, Ivanov Victor K. 2001. “A review of the thermophysical properties of MOX and UO2 fuels.” Journal of Nuclear Materials, 299. https://doi.org/10.1016/S0022-3115(01)00692-4

  24. Ma Li, and Asok K. Ray. 2012. “Formation Energies and Swelling of Uranium Dioxide by Point Defects.” Physics Letters, Section A: General, Atomic and Solid State Physics. https://doi.org/10.1016/j.physleta.2012.03.017.

  25. Morimoto Kyoichi, Kato Masato, Ogasawara Masahiro, Kashimura Motoaki, and Abe Tomoyuki. 2008. “Thermal Conductivities of (U, Pu, Am)O2 Solid Solutions.” Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2006.12.159.

  26. Schelling Patrick K., Phillpot Simon R., and Keblinski Pawel. 2002. “Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity.” Physical Review B — Condensed Matter and Materials Physics. https://doi.org/10.1103/PhysRevB.65.144306.

  27. Yamanaka Shinsuke, Kurosaki Ken, Katayama Masahito, Adachi Jun, Uno Masayoshi, Kuroishi Takeshi, Yamasaki Masatoshi. 2009. Thermal and mechanical properties of (U,Er)O2.” Journal of Nuclear Materials. 389. https://doi.org/10.1016/j.jnucmat.2009.01.016

  28. Liu X.-Y., M. W. D. Cooper, K. J. McClellan, J. C. Lashley, D. D. Byler, B. D. C. Bell, R. W. Grimes, C. R. Stanek, and D. A. Andersson. 2016. “Molecular Dynamics Simulation of Thermal Transport in UO2 Containing Uranium, Oxygen, and Fission-product Defects.” Phys. Rev. Applied6, 044015

    Article  Google Scholar 

  29. Plimpton S.1995. “Fast Parallel Algorithms for Short–Range Molecular Dynamics.” Journal of Computational Physics117 (June 1994): 1–19. https://doi.org/10.1006/jcph.1995.1039.

  30. Biersack J.P., and J.F. Ziegler. 1985. “The Stopping and Range of Ions in Solids.” Ion Implantation Techniques Springer Series in Electrophysics Volume 10, no. Volume 1: 122–56. https://doi.org/10.1007/978-3-642-68779-2_5.

    Google Scholar 

  31. IAEA. 2006. “Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors.” IAEA-TECDOC.

  32. Patrick K. Schelling, Simon R. Phillpot, P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity.” Phys. Rev. B65 (2002) 144306. https://doi.org/10.1103/PhysRevB.65.144306

    Article  Google Scholar 

  33. Fink J.K., 2000. “Thermophysical properties of uranium dioxide.” Journal of Nuclear Materials. 279; 1–18.

    Article  CAS  Google Scholar 

  34. Harding J.H., Martin D.G.1989. “A recommendation for the thermal conductivity of UO2.” Journal of Nuclear Materials. 166; 223–226. https://doi.org/10.1016/0022-3115(89)90218-3

    Article  CAS  Google Scholar 

  35. Kurosaki Ken, Adachi Jun, Katayama Masahito, Osaka Masahiko, Tanaka Kenya, Uno Masayoshi, and Yamanaka Shinsuke. 2006. “Molecular Dynamics Studies of Americium-275 Containing Mixed Oxide Fuels.” Journal of Nuclear Science and Technology. https://doi.org/10.1080/18811248.2006.9711215.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willie, A.K.D., Zhao, H., Azeem, M.M. et al. Analysis of Burnup effects and Its Integrity Assessment in the Interim of Irradiation with Molecular Dynamics. MRS Advances 5, 1799–1810 (2020). https://doi.org/10.1557/adv.2020.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.19

Keywords

Navigation