Skip to main content

Advertisement

Log in

Flatwise Compression and Local Indentation Response of 3D-Printed Strut-Reinforced Kagome with Polyurethane Filling

  • Solid Freeform Fabrication 2019
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additively manufactured lattice structures are finding wider applications as core materials because of their high specific strength, modulus, and energy absorption. Strut-reinforced Kagome (SRK) structures have been shown to have good compressive performance compared with many existing lattice structures. Herein, the performance of acrylonitrile butadiene styrene (ABS) SRK lattice structures fabricated by fused deposition modeling under flatwise compression and local loading was investigated with and without polyurethane foam fillers. The SRK structure demonstrated abrupt failure at the joints in the vicinity of the face sheet, thereby reducing the energy absorption of the structure. The SRK filled with low-density polyurethane foam had no significant effect on peak failure load and moduli, whereas energy absorption per unit mass was higher by 16.5%. The SRK filled with high-density foam showed 116% increase in energy absorption. Similarly, a stronger indentation response was observed with high-density foam-filled SRK sandwich structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge: Cambridge University Press, 1999).

    MATH  Google Scholar 

  2. N. Fleck, V. Deshpande, and M. Ashby, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466, 2495 (2010).

    Article  Google Scholar 

  3. V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Acta Mater. 49, 1035 (2001).

    Article  Google Scholar 

  4. V. Rizov, A. Shipsha, and D. Zenkert, Compos. Struct. 69, 95 (2005).

    Article  Google Scholar 

  5. T.S. Lim, C.S. Lee, and D.G. Lee, J. Compos. Mater. 38, 1639 (2004).

    Article  Google Scholar 

  6. S. Markkula, S. Storck, D. Burns, and M. Zupan, Adv. Eng. Mater. 11, 56 (2009).

    Article  Google Scholar 

  7. R. Gumruk, R.A.W. Mines, and S. Karadeniz, Mater. Sci. Eng. A 586, 392 (2013).

    Article  Google Scholar 

  8. S. McKown, Y. Shen, W.K. Brookes, C.J. Sutcliffe, W.J. Cantwell, G.S. Langdon, G.N. Nurick, and M.D. Theobald, Int. J. Impact Eng. 35, 795 (2008).

    Article  Google Scholar 

  9. I. Ullah, J. Elambasseril, M. Brandt, and S. Feih, Compos. Struct. 118, 294 (2014).

    Article  Google Scholar 

  10. R. Gautam, S. Idapalapati, and S. Feih, Mater. Des. 137, 266 (2018).

    Article  Google Scholar 

  11. G. Rinoj, S. Idapalapati, and S. Feih, in Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016), Singapore (2016), p. 91.

  12. I. Ullah, M. Brandt, and S. Feih, Mater. Des. 92, 937 (2016).

    Article  Google Scholar 

  13. R. Gautam and S. Idapalapati, Metals 9, 517 (2019).

    Article  Google Scholar 

  14. R. Gautam and S. Idapalapati, Mater. Des. 164, 107541 (2019).

    Article  Google Scholar 

  15. R. Gautam, S. Idapalapati, and E.S.L. Koh, in Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore (2018).

  16. G. Sun, D. Chen, X. Huo, G. Zheng, and Q. Li, Compos. Struct. 184, 110 (2018).

    Article  Google Scholar 

  17. F. Zhu, G. Lu, D. Ruan, and Z. Wang, Int. J. Prot. Struct. 1, 507 (2010).

    Article  Google Scholar 

  18. P. Chen, Z. Shen, J. Xiong, S. Yang, S. Fu, and L. Ye, Compos. Struct. 75, 489 (2006).

    Article  Google Scholar 

  19. V. Dikshit, A.P. Nagalingam, Y.L. Yap, S.L. Sing, W.Y. Yeong, and J. Wei, Mater. Des. 137, 140 (2018).

    Article  Google Scholar 

  20. R.J. D’Mello and A.M. Waas, Compos. Struct. 94, 1669 (2012).

    Article  Google Scholar 

  21. S.H. Yoo and S.H. Chang, Compos. Struct. 86, 211 (2008).

    Article  Google Scholar 

  22. G. Zhang, B. Wang, L. Ma, L. Wu, S. Pan, and J. Yang, Compos. Struct. 108, 304 (2014).

    Article  Google Scholar 

  23. Y.-T. Kao, A.R. Amin, N. Payne, J. Wang, and B.L. Tai, Compos. Struct. 192, 93 (2018).

    Article  Google Scholar 

  24. K. Mohan, T.-H. Yip, I. Sridhar, and H. Seow, J. Mater. Sci. 42, 3714 (2007).

    Article  Google Scholar 

  25. Q. Li, R. Mines, and R. Birch, Int. J. Solids Struct. 37, 6321 (2000).

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by the Ministry of Education—Singapore (MoE) Academic Research Fund Tier 1 Grant # MOE RG173/15 administered through Nanyang Technological University, Singapore. IS thanks the School of Mechanical and Aerospace Engineering, NTU Singapore for the Research Incentive Grant. The authors thank Mr Teh Wee Lee for assistance with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Idapalapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, R., Sridharan, V.S. & Idapalapati, S. Flatwise Compression and Local Indentation Response of 3D-Printed Strut-Reinforced Kagome with Polyurethane Filling. JOM 72, 1324–1331 (2020). https://doi.org/10.1007/s11837-019-03968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03968-w

Navigation