Skip to main content
Log in

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshimura A, Nakao T, Yashiro S, et al. Improvement on out-of-plane impact resistance of CFRP laminates due to through-the-thickness stitching. Composites. Part A, Applied Science and Manufacturing, 2008, 39(9): 1370–1379

    Article  Google Scholar 

  2. Takagaki N, Okubo K, Fujii T. Improvement of fatigue strength and impact properties of plain-woven CFRP modified with micro fibrillated cellulose. Advanced Materials Research, 2008, 47–50: 133–136

    Article  Google Scholar 

  3. Blok L G, Kratz J, Lukaszewicz D, et al. Improvement of the inplane crushing response of CFRP sandwich panels by through-thickness reinforcements. Composite Structures, 2017, 161: 15–22

    Article  Google Scholar 

  4. Cantwell W J, Morton J. The impact resistance of composite materials—A review. Composites, 1991, 22(5): 347–362

    Article  Google Scholar 

  5. Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials. Composites. Part A, Applied Science and Manufacturing, 1996, 27(12): 1123–1131

    Article  Google Scholar 

  6. Agrawal S, Singh K K, Sarkar P K. Impact damage on fibre-reinforced polymer matrix composite—A review. Journal of Composite Materials, 2014, 48(3): 317–332

    Article  Google Scholar 

  7. Sayer M, Bektaş N B, Sayman O. An experimental investigation on the impact behavior of hybrid composite plates. Composite Structures, 2010, 92(5): 1256–1262

    Article  Google Scholar 

  8. Yang F J, Cantwell W J. Impact damage initiation in composite materials. Composites Science and Technology, 2010, 70(2): 336–342

    Article  Google Scholar 

  9. Polimeno U, Meo M, Almond D P, et al. Detecting low velocity impact damage in composite plate using nonlinear acoustic/ultrasound methods. Applied Composite Materials, 2010, 17(5): 481–488

    Article  Google Scholar 

  10. Wang B, Wu L Z, Ma L, et al. Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures. Composites. Part B, Engineering, 2011, 42(4): 891–897

    Article  Google Scholar 

  11. Batra R C, Gopinath G, Zheng J Q. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Composite Structures, 2012, 94(2): 540–547

    Article  Google Scholar 

  12. Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Composite Structures, 2012, 94(9): 2902–2913

    Article  Google Scholar 

  13. Quaresimin M, Ricotta M, Martello L, et al. Energy absorption in composite laminates under impact loading. Composites. Part B, Engineering, 2013, 44(1): 133–140

    Article  Google Scholar 

  14. Long S, Yao X, Zhang X. Delamination prediction in composite laminates under low-velocity impact. Composite Structures, 2015, 132: 290–298

    Article  Google Scholar 

  15. Jung B S, Kim M S, Kim J S, et al. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite. Physica Scripta, 2010, 2010(T139): 014042

    Article  Google Scholar 

  16. Raghavan J, Bartkiewicz T, Boyko S, et al. Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites. Composites. Part B, Engineering, 2010, 41(3): 214–222

    Article  Google Scholar 

  17. Wierschem N, Andrawes B. Superelastic SMA-FRP composite reinforcement for concrete structures. Smart Materials and Structures, 2010, 19(2): 025011

    Article  Google Scholar 

  18. Panda S K, Singh B N. Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre. Aerospace Science and Technology, 2013, 29(1): 47–57

    Article  Google Scholar 

  19. Rodrigue H, Wang W, Bhandari B, et al. SMA-based smart soft composite structure capable of multiple modes of actuation. Composites. Part B, Engineering, 2015, 82: 152–158

    Article  Google Scholar 

  20. Daghash S M, Ozbulut O E. Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading. Materials & Design, 2016, 111: 504–512

    Article  Google Scholar 

  21. Sofocleous K, Drakonakis V M, Ogin S L, et al. The influence of carbon nanotubes and shape memory alloy wires to controlled impact resistance of polymer composites. Journal of Composite Materials, 2017, 51(2): 273–285

    Article  Google Scholar 

  22. El-Tahan M, Dawood M. Bond behavior of NiTiNb SMA wires embedded in CFRP composites. Polymer Composites, 2018, 39(10): 3780–3791

    Article  Google Scholar 

  23. Mahmood Baitab D, Laila Abang Haji Abdul Majid D, Junita Abdullah E, et al. A review of techniques for embedding shape memory alloy (SMA) wires in smart woven composites. International Journal of Engineering and Technology, 2018, 7(4.13): 129–136

    Article  Google Scholar 

  24. Quade D J, Jana S C, Morscher G N, et al. The effect of thin film adhesives on mode II interlaminar fracture toughness in carbon fiber composites with shape memory alloy inserts. Mechanics of Materials, 2019, 131: 22–32

    Article  Google Scholar 

  25. Eslami-Farsani R, Khazaie M. Effect of shape memory alloy wires on high-velocity impact response of basalt fiber metal laminates. Journal of Reinforced Plastics and Composites, 2018, 37(5): 300–309

    Article  Google Scholar 

  26. Eslami-Farsani R, Mohaseb Karimlou M R, Saeedi A, et al. Effect of shape memory alloy wires on the buckling behavior of fiber metal laminates. Fibers and Polymers, 2019, 20(8): 1690–1695

    Article  Google Scholar 

  27. Pazhanivel K, Bhaskar G B, Elayaperumal A, et al. Influence of SMA reinforcement on the impact resistance of GFRP composite laminates under different temperatures. Bulletin of Materials Science, 2016, 39(3): 889–899

    Article  Google Scholar 

  28. Pazhanivel K, Bhaskar G B, Elayaperumal A, et al. Influence of Ni-Ti shape memory alloy short fibers on the flexural response of glass fiber reinforced polymeric composites. SN Applied Sciences, 2019, 1(7): 789

    Article  Google Scholar 

  29. Sun Z, Xu Y, Wang W. Experimentation of the bilinear elastic behavior of plain-woven GFRP composite with embedded SMA wires. Polymers, 2019, 11(3): 405

    Article  Google Scholar 

  30. Wang J, Moumni Z, Zhang W, et al. A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain. International Journal of Engineering Science, 2017, 117: 51–77

    Article  MathSciNet  MATH  Google Scholar 

  31. Nie Z. Advanced mesomechanical modeling of triaxially braided composites for dynamic impact analysis with failure. Dissertation for the Doctoral Degree. Akron: The University of Akron, 2014

    Google Scholar 

  32. Yang B, Lei H, Wang Z, et al. Effects of SMA filament surface nano SiO2 modification on interface bonding strength of SMA/epoxy composites. Acta Materiae Compositae Sinica, 2015, 32(5): 1341–1348 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11802243 and 11802241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Yingjie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Su, X., Wang, J. et al. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires. Front. Mech. Eng. 15, 547–557 (2020). https://doi.org/10.1007/s11465-020-0595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-020-0595-1

Keywords

Navigation