Skip to main content
Log in

Microstructure, Thermal Conductivity and Mechanical Properties of Mg-Zn-Mn-Y Quaternary Alloys

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As-cast, as-extruded and T6 heat-treated Mg-2Zn-0.3Mn-[x] wt.% Y (x = 0, 0.4, 0.8) alloys were formed via a melting process, an extrusion process and T6 aging treatment, respectively. Microstructural analysis showed that the addition of yttrium (Y) resulted in grain refinement in the samples. The hot extrusion process and T6 heat treatment contributed to the precipitation of second phases and a reduction of the dislocation density as well as to a reduction of the lattice distortion. The thermal conductivity of the T6 heat-treated samples was the highest because it had the lowest lattice distortion. A higher Y content did not result in increased thermal conductivity. However, the yield strength and tensile strength of the alloys increased with increasing Y content. Fine-grain strengthening and dispersion strengthening were responsible for the higher yield strength and ultimate tensile strength of the as-extruded and T6 heat-treated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Kannan, X.L. Ma, N.M. Krywopusk, L.J. Kecskes, T.P. Weihs, and K.T. Ramesh, J. Mater. Sci. 54, 133949 (2019).

    Article  Google Scholar 

  2. Á.L. Marta, O.C. Alberto, C. Fernando, and A.R. Oscar, Mater. Sci. Eng. A 710, 240 (2018).

    Article  Google Scholar 

  3. R. Mola, T. Bucki, and M. Gwoździk, JOM 71, 2078 (2019).

    Article  Google Scholar 

  4. T. Nakata, C. Xu, K. Suzawa, K. Yoshida, N. Kawabe, and S. Kamado, Mater. Sci. Eng. A 737, 223 (2018).

    Article  Google Scholar 

  5. F.G. Qi, D.F. Zhang, X.H. Zhang, and X.X. Xu, Mater. Sci. Eng. A 593, 70 (2014).

    Article  Google Scholar 

  6. X. Gao and J.F. Nie, Scr. Mater. 57, 655 (2007).

    Article  Google Scholar 

  7. J. Peng, L.P. Zhong, Y.J. Wang, Y. Lu, and F.S. Pan, Mater. Des. 87, 914 (2015).

    Article  Google Scholar 

  8. A. Rudajevová, F. Buch, and B.L. Mordike, J. Alloys Compd. 292, 27 (1999).

    Article  Google Scholar 

  9. L.P. Zhong, J. Peng, M. Li, Y.J. Wang, Y. Lu, and F.S. Pan, J. Alloys Compd. 661, 402 (2016).

    Article  Google Scholar 

  10. B.J. Lv, J. Peng, Y. Peng, and A.T. Tang, J. Magnes. Alloys 1, 346 (2013).

    Article  Google Scholar 

  11. M.B. Yang, C.Y. Duan, H. Li, T.Z. Guo, and J. Zhang, J. Alloys Compd. 574, 165 (2013).

    Article  Google Scholar 

  12. J.W. Yuan, K. Zhang, X.H. Zhang, X.G. Li, T. Li, Y.J. Li, M.L. Ma, and G.L. Shi, J. Alloys Compd. 578, 32 (2013).

    Article  Google Scholar 

  13. S.A. Khan, Y. Miyashita, Y. Mutoh, and Z.B. Sajuri, Mater. Sci. Eng. A 420, 315 (2006).

    Article  Google Scholar 

  14. K. Oh-ishi, K. Hono, and K.S. Shin, Mater. Sci. Eng. A 496, 425 (2008).

    Article  Google Scholar 

  15. J.Q. Hao, J.S. Zhang, C.X. Xu, and Y.T. Zhang, Mater. Sci. Eng. A 735, 99 (2018).

    Article  Google Scholar 

  16. D.K. Xu, E.H. Han, L. Liu, and Y.B. Xu, Metall. Mater. Trans. A 40, 1727 (2009).

    Article  Google Scholar 

  17. A. Singh and A.P. Tsai, Scr. Mater. 49, 143 (2003).

    Article  Google Scholar 

  18. Y.B. Ma, J.S. Zhang, C.X. Xu, Y. Li, Y.T. Zhang, and Z. Zhang, Mater. Sci. Eng. A 724, 529 (2018).

    Article  Google Scholar 

  19. S.R. Wang, P.Q. Guo, L.Y. Yang, and Y.J. Wang, J. Mater. Eng. Perform. 18, 137 (2009).

    Article  Google Scholar 

  20. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Mater. Des. 87, 245 (2015).

    Article  Google Scholar 

  21. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, and D.L. Chen, J. Alloys Compd. 644, 814 (2015).

    Article  Google Scholar 

  22. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead Publishing Ltd, 2002), pp. 233–244.

    Book  Google Scholar 

  23. X. Cai, G.X. Hu, and Y.H Rong, Fundamentals of Materials Science. (Shanghai Jiaotong University Press, Shanghai, 2010), pp. 41–42, pp. 95–96, pp. 217–219.

  24. R.B. Figueiredo, F.S.J. Poggiali, C.L.P. Silva, P.R. Cetlin, and T.G. Langdon, J. Mater. Sci. 51, 3013 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (No. 61775131), Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering), the graduate fund program (EGD17YJS029) and the Key Subject Construction Project (Material Science, XXKZD1601) from Shanghai Polytechnic University. We thank Arun Paraecattil, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, X., Zhang, Y. et al. Microstructure, Thermal Conductivity and Mechanical Properties of Mg-Zn-Mn-Y Quaternary Alloys. JOM 72, 1580–1588 (2020). https://doi.org/10.1007/s11837-019-03967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03967-x

Navigation