Skip to main content
Log in

On the Mechanism of Sodic Removal from Bauxite Residue and Bauxite Desilication Products (BDP) Using Acetic Acid

  • Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bauxite desilication products (BDPs) are fundamental causes of persistent alkalinity and salinity in bauxite residue. Previous studies have shown that significant amounts of acetic acid and Na+ were detected in the pore water of organic matter-amended and bacteria-regulated bauxite residue, implying the capability of acetic acid to alleviate the long-term residual alkalinity and salinity of bauxite residue. The present study aims to establish a fundamental understanding of the bauxite residue/BDP weathering mechanism using acetic acid as a case model of microbial-derived low-molecular-weight soluble organics. Large amounts of Na+ were released into the solution in treated bauxite residue, implying enhanced desalination of bauxite residue/BDP by acetic acid. Attenuated total reflectance—Fourier transform infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy indicated the adsorption of acetate on the surface of BDP, which caused slight deformation of BDP’s cages and thus made encaged Na+ exchange easily with other cations. This mechanism of organic acid-mediated Na+ exchange may provide the key to unlocking the barrier of alkaline mineral weathering and subsequent development of soil-like properties for sustainable plant colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.W. Bray, D.I. Stewart, R. Courtney, S.P. Rout, P.N. Humphreys, W.M. Mayes, and I.T. Burke, Environ. Sci. Technol. 52, 152 (2018).

    Google Scholar 

  2. E. Di Carlo, C.R. Chen, R.J. Haynes, I.R. Phillips, and R. Courtney, Soil Res. 57, 419 (2019).

    Google Scholar 

  3. K. Evans, J. Sustain. Met. 2, 316 (2016).

    Google Scholar 

  4. J. Ren, J. Chen, L. Han, M. Wang, B. Yang, P. Du, and F. Li, Sci. Total Environ. 628, 1200 (2018).

    Google Scholar 

  5. W. Liang, S.J. Couperthwaite, G. Kaur, C. Yan, D.W. Johnstone, and G.J. Millar, J. Colloid Interface Sci. 423, 158 (2014).

    Google Scholar 

  6. T.C. Santini, J.L. Kerr, and L.A. Warren, J. Hazard. Mater. 293, 131 (2015).

    Google Scholar 

  7. T.C. Santini, L.I. Malcolm, G.W. Tyson, and L.A. Warren, Environ. Sci. Technol. 50, 11164 (2016).

    Google Scholar 

  8. T.C. Santini and Y.G. Peng, Environ. Sci. Technol. 51, 12592 (2017).

    Google Scholar 

  9. F. You, L. Zhang, J. Ye, and L. Huang, Sci. Total Environ. 663, 216 (2019).

    Google Scholar 

  10. M.K. Hamdy and F.S. Williams, J. Ind. Microbiol. Biotechnol. 27, 228 (2001).

    Google Scholar 

  11. D.A. Rubinos, V. Valcárcel, G. Spagnoli, and M.T. Barral, JOM 69, 1607 (2017).

    Google Scholar 

  12. M. Gräfe and C. Klauber, Hydrometallurgy 108, 46 (2011).

    Google Scholar 

  13. N.J. Barrow, Aust. J. Agric. Res. 33, 275 (1982).

    Google Scholar 

  14. C. Klauber, N. Harwood, R. Hockridge, and C. Middleton, Essential Readings in Light Metals: Volume 1 Alumina and Bauxite, ed. D. Donaldson and B.E. Raahauge (Cham: Springer, 2016), p. 951.

    Google Scholar 

  15. G.J. Levy, M. Agassi, H.J.C. Smith, and R. Stern, Soil Sci. Soc. Am. J. 57, 803 (1993).

    Google Scholar 

  16. J.B. Wehr, I. Fulton, and N.W. Menzies, Environ. Manag. 37, 297 (2006).

    Google Scholar 

  17. J.W.C. Wong and G.E. Ho, J. Environ. Qual. 24, 461 (1995).

    Google Scholar 

  18. M. Gräfe, G. Power, and C. Klauber, Hydrometallurgy 108, 60 (2011).

    Google Scholar 

  19. H. Peng, M. Ding, and J. Vaughan, Ind. Eng. Chem. Res. 57, 10292 (2018).

    Google Scholar 

  20. S. Luger, J. Felsche, and P. Fischer, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 43, 1 (1987).

    Google Scholar 

  21. I. Hassan, S.M. Antao, and J.B. Parise, Am. Miner. 91, 1117 (2006).

    Google Scholar 

  22. C.A.R. Reyes, C. Williams, and O.M.C. Alarcón, Mater. Res. 16, 424 (2013).

    Google Scholar 

  23. W. Depmeier, Rev. Miner. Geochem. 57, 203 (2005).

    Google Scholar 

  24. S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Res. Int. 23, 1120 (2016).

    Google Scholar 

  25. J.L. Drever and L.L. Stillings, Colloids Surf. Physicochem. Eng. Aspects 120, 167 (1997).

    Google Scholar 

  26. D.E. Lazo, L.G. Dyer, and R.D. Alorro, Miner. Eng. 100, 115 (2017).

    Google Scholar 

  27. K. Vermohlen, H. Lewandowski, H.D. Narres, and E. Koglin, Colloids Surf. Physicochem. Eng. Aspects 170, 181 (2000).

    Google Scholar 

  28. J. Felsche and S. Luger, Ber. Bunsenges. Phys. Chem. 90, 731 (1986).

    Google Scholar 

  29. G. Engelhardt, J. Felsche, and P. Sieger, J. Am. Chem. Soc. 114, 1173 (1992).

    Google Scholar 

  30. V.J. Alstadt, J.D. Kubicki, and M.A. Freedman, J. Phys. Chem. A 120, 8339 (2016).

    Google Scholar 

  31. Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, and A. Li, Sci. Total Environ. 646, 265 (2019).

    Google Scholar 

  32. A. Charalambos, University of Manchester, Manchester, UK, PhD thesis, 2010

  33. K. Morimoto, S. Anraku, J. Hoshino, T. Yoneda, and T. Sato, J. Colloid Interface Sci. 384, 99 (2012).

    Google Scholar 

  34. C. Günther, H. Richter, I. Voigt, A. Michaelis, H. Tzscheutschler, R. Krause-Rehberg, and J.M. Serra, Microporous Mesoporous Mater. 214, 1 (2015).

    Google Scholar 

  35. A.M. Mofrad, C. Peixoto, J. Blumeyer, J. Liu, H.K. Hunt, and K.D. Hammond, J. Phys. Chem. C 122, 24765 (2018).

    Google Scholar 

  36. N.V. Chukanov, I.V. Pekov, L.V. Olysych, N.V. Zubkova, and M.F. Vigasina, Can. Mineral. 49, 1151 (2012).

    Google Scholar 

  37. R.E. Blake and L.M. Walter, Chem. Geol. 132, 91 (1996).

    Google Scholar 

  38. L. Chen, W. Zhu, K. Lin, N. Hu, Y. Yu, X. Zhou, L.F. Yuan, S.M. Hu, and Y. Luo, J. Phys. Chem. A 119, 3209 (2015).

    Google Scholar 

  39. M. Król, A. Koleżyński, A. Mikuła, and W. Mozgawa, Molecular Spectroscopy-Experiment and Theory: From Molecules to Functional Materials, ed. A. Koleżyński and M. Król (Cham: Springer, 2019), p. 301.

    Google Scholar 

  40. J. Xu, Q. Wang, S. Li, and F. Deng, Solid-State NMR in Zeolite Catalysis, 1st ed. (Singapore: Springer, 2019), p. 159.

    Google Scholar 

  41. F. Babonneau, N. Baccile, G. Laurent, J. Maquet, T. Azaïs, C. Gervais, and C. Bonhomme, C. R. Chimie 13, 58 (2010).

    Google Scholar 

  42. G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa, and M. Magi, Org. Magn. Reson. 5, 561 (1973).

    Google Scholar 

  43. K. Yamamoto, Y. Sakata, Y. Nohara, Y. Takahashi, and T. Tatsumi, Science 300, 470 (2003).

    Google Scholar 

  44. C. Li, W. Liu, and Y. Ma, J. Mol. Liq. 289, 111052 (2019).

    Google Scholar 

  45. M.M. Emamjomeh, M. Sivakumar, and A.S. Varyani, Desalination 275, 102 (2011).

    Google Scholar 

  46. D. Freude, T. Frohlich, and H. Pfeifer, Zeolites 3, 171 (1982).

    Google Scholar 

  47. I. Jum’h, A. Telfah, J. Lambert, M. Gogiashvili, H. Al-Taani, and R. Hergenröder, J. Mol. Liq. 227, 106 (2017).

    Google Scholar 

  48. G. Engelhardt, P. Sieger, and J. Felsche, Anal. Chim. Acta 283, 967 (1993).

    Google Scholar 

Download references

Acknowledgements

SW thanks David Appleton and Ekaterina Strounina for bauxite residue and BDP sample analysis and Lachlan Robertson for helpful discussion. SW gratefully acknowledges the University of Queensland for the UQ-RTP and UQ Graduate School scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Nguyen, T., Peng, H. et al. On the Mechanism of Sodic Removal from Bauxite Residue and Bauxite Desilication Products (BDP) Using Acetic Acid. JOM 72, 309–318 (2020). https://doi.org/10.1007/s11837-019-03884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03884-z

Navigation