Skip to main content
Log in

Faceted He-Filled “Pancakes” Confined within Nanoscale Metal Layers

  • Advanced Characterization and Testing of Irradiated Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Helium (He)-filled cavities in single-phase metals typically take on nearly equiaxed shapes, such as spherical bubbles or voids. However, in multiphase metal composites, the morphology of the constituent phases and the structure of the interfaces between them alter the shapes of such He-filled cavities. In this work, a He-implanted three-layer composite consisting of a 5-nm-thick Cu layer sandwiched between two V layers was reexamined. In addition to He-filled nanochannels, which have been reported in this material before, we discovered faceted He-filled “pancakes,” viz. high-aspect-ratio cavities spanning the thickness of the Cu layer and extending several tens of nanometers parallel to the Cu/V interfaces. We propose that such pancakes form nanochannels via a multistage coarsening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Wolfer, J. Nucl. Mater. 93–94, 713 (1980). https://doi.org/10.1016/0022-3115(80)90197-X.

    Article  Google Scholar 

  2. R. Escobar Galindo, A. van Veen, J. Evans, H. Schut, and J. de Hosson, Nucl. Instrum. Methods Phys. Res. Sect. B 217(2), 262 (2004). https://doi.org/10.1016/j.nimb.2003.10.012

    Article  Google Scholar 

  3. H. Trinkaus, and B. Singh, J. Nucl. Mater. 323(2–3), 229 (2003). https://doi.org/10.1016/j.jnucmat.2003.09.001.

    Article  Google Scholar 

  4. H. Trinkaus, Radiat. Effects 78(1–4), 189 (1983). https://doi.org/10.1080/00337578308207371.

    Article  Google Scholar 

  5. K. Russell, Acta Metall. 26(10), 1615 (1978). https://doi.org/10.1016/0001-6160(78)90071-8.

    Article  Google Scholar 

  6. Q. Wei, N. Li, K. Sun, and L. Wang, Scr. Mater. 63(4), 430 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.043.

    Article  Google Scholar 

  7. L. Rayleigh, On the instability of jets. Proc. London Math. (1878)

  8. K. Hattar, M. Demkowicz, A. Misra, I. Robertson, and R. Hoagland, Scr. Mater. 58(7), 541 (2008).

    Article  Google Scholar 

  9. W. Han, N. Mara, Y. Wang, A. Misra, and M. Demkowicz, J. Nucl. Mater. 452(1–3), 57 (2014).

    Article  Google Scholar 

  10. A. Kashinath, A. Misra, and M. Demkowicz, Phys. Rev. Lett. 110(8), 086101 (2013).

    Article  Google Scholar 

  11. S. Zheng, S. Shao, J. Zhang, Y. Wang, M.J. Demkowicz, I.J. Beyerlein, and N.A. Mara, Sci. Rep. 5, 15428 (2015).

    Article  Google Scholar 

  12. D. Chen, N. Li, D. Yuryev, J.K. Baldwin, Y. Wang, and M.J. Demkowicz, Sci. Adv. 3, 11 (2017). https://doi.org/10.1126/sciadv.aao2710.

    Article  Google Scholar 

  13. J.F. Ziegler, and J.P. Biersack, The Stopping and Range of Ions in Matter (Springer US, Boston, MA, 1985), pp. 93–129. https://doi.org/10.1007/978-1-4615-8103-1_3

    Chapter  Google Scholar 

  14. S. Zheng, S. Shao, J. Zhang, Y. Wang, M.J. Demkowicz, I.J. Beyerlein, N.A. Mara, Sci. Rep. 5, 15428 (2015). https://doi.org/10.1038/srep15428

  15. D. Chen, N. Li, D. Yuryev, J. Wen, K. Baldwin, M.J. Demkowicz, and Y. Wang, Mater. Res. Lett. 5(5), 335 (2017).

    Article  Google Scholar 

  16. L. Mansur, and W. Coghlan, J. Nucl. Mater. 119(1), 1 (1983).

    Article  Google Scholar 

  17. P.J. Janssen, H. Meijer, and P. Anderson, Phys. Fluids 24(1), 012102 (2012).

    Article  Google Scholar 

  18. M. Demkowicz, A. Misra, and A. Caro, Curr. Opin. Solid State Mater. Sci. 16(3), 101 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the DOE Office of Science Graduate Student Research (SCGSR) program, which financially supported a 6-month grant to conduct this work at Los Alamos National Laboratory. This work was primarily supported by the National Science Foundation (NSF) through the DMREF Program under Grant Numbers 1533557 and 1623051. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-NA-0003525). The authors acknowledge the financial support of the University of Michigan College of Engineering and NSF Grant DMR-0723032, and technical support from the Michigan Center for Materials Characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Derby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derby, B.K., Baldwin, J.K., Chen, D. et al. Faceted He-Filled “Pancakes” Confined within Nanoscale Metal Layers. JOM 72, 145–149 (2020). https://doi.org/10.1007/s11837-019-03870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03870-5

Navigation