Skip to main content
Log in

Localized Helium Implantation in SiCf/SiCm Composites Comparing Fiber and Matrix Swelling

  • Advanced Characterization and Testing of Irradiated Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Composites formed by SiC fiber reinforcement of a SiC matrix are materials of interest for use in high temperature, high strength, and high irradiation condition applications. These materials have been considered for use in both fusion and fission reactors due to their excellent physical and neutronic properties. Recent attention has focused on such materials’ ability to act as accident-tolerant fuel cladding in light water reactors. The work presented herein studies the swelling behavior of these materials using a novel rapid helium-ion implantation approach. Localized helium implantation was conducted to a dose of 5 × 1017 ions/cm2 in fibers and matrix independently. The results showed that the height increase measured using atom force microscopy (AFM) was significantly less for the fibers than the matrix, potentially due to their finer microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.K. Mansur, E.H. Lee, P.J. Maziasz, and A.P. Rowcliffe, J. Nucl. Mater. 141–143, 633 (1986).

    Article  Google Scholar 

  2. F.C. Wu, Y.B. Zhu, Q. Wu, X.Z. Li, P. Wang, and H.A. Wu, J. Nucl. Mater. 496, 265 (2017).

    Article  Google Scholar 

  3. L.L. Snead, R.H. Jones, A. Kohyama, and P. Fenici, J. Nucl. Mater. 233–237, 26 (1996).

    Article  Google Scholar 

  4. S. Saremi, R. Xu, F.I. Allen, J. Maher, J.C. Agar, R. Gao, P. Hosemann, and L.W. Martin, Phys. Rev. Mater. 2, 084414 (2018).

    Article  Google Scholar 

  5. R.E. Stoller and D.M. Stewart, J. Nucl. Mater. 417, 1106 (2011).

    Article  Google Scholar 

  6. R.S. Nelson, Philos. Mag. (1798–1977) 9, 343 (1964).

    Article  Google Scholar 

  7. W. Bauer and G.J. Thomas, J. Nucl. Mater. 42, 96 (1972).

    Article  Google Scholar 

  8. B.B. Cipiti and G.L. Kulcinski, J. Nucl. Mater. 347, 298 (2005).

    Article  Google Scholar 

  9. S.K. Erents and G.M. McCracken, Radiat. Eff. 18, 191 (1973).

    Article  Google Scholar 

  10. F. Allen, P. Hosemann, and M. Balooch, U.C. Berkeley, Berkeley, California, arXiv:1909.02133 (2019)

  11. Y. Yang, D. Frazer, M. Balooch, and P. Hosemann, J. Nucl. Mater. 512, 137 (2018).

    Article  Google Scholar 

  12. V. Veligura, G. Hlawacek, R.P. Berkelaar, R. van Gastel, H.J.W. Zandvliet, and B. Poelsema, Beilstein J. Nanotechnol. 4, 453 (2013).

    Article  Google Scholar 

  13. G. Hlawacek, V. Veligura, R. van Gastel, and B. Poelsema, J. Vac. Sci. Technol. B 32, 020801 (2014).

    Article  Google Scholar 

  14. F. Bergner, G. Hlawacek, and C. Heintze, J. Nucl. Mater. 505, 267 (2018).

    Article  Google Scholar 

  15. Z.J. Wang, F. Allen, Z.-W. Shan, and P. Hosemann, Acta Mater. 121, 78 (2016).

    Article  Google Scholar 

  16. P.B. Johnson, R.W. Thomson, and K. Reader, J. Nucl. Mater. 273, 117 (1999).

    Article  Google Scholar 

  17. D. Frazer, J. Szornel, D.L. Krumwiede, K.A. Terrani, and P. Hosemann, Exp. Mech. 57, 1081 (2017).

    Article  Google Scholar 

  18. P.B. Johnson and D.J. Mazey, Nature 281, 359 (1979).

    Article  Google Scholar 

  19. R.W. Harrison, G. Greaves, J.A. Hinks, and S.E. Donnelly, Sci. Rep. 7, 7724 (2017).

    Article  Google Scholar 

  20. P. Hosemann, D. Frazer, M.F. Ashby, and M. Fratoni, Scr. Mater. 143, 181 (2018).

    Article  Google Scholar 

  21. K. Yueh and K.A. Terrani, J. Nucl. Mater. 448, 380 (2014).

    Article  Google Scholar 

  22. L.L. Snead, T. Nozawa, M. Ferraris, Y. Katocm, R. Shinavski, and M. Sawan, J. Nucl. Mater. 417, 330 (2011).

    Article  Google Scholar 

  23. C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa, and C.A. Back, J. Nucl. Mater. 466, 667 (2015).

    Article  Google Scholar 

  24. D. Frazer, M.D. Abad, D. Krumwiede, C.A. Back, H.E. Khalifa, C.P. Deck, and P. Hosemann, Compos. Part A 70, 93 (2015).

    Article  Google Scholar 

  25. J. Kabel, M. Balooch, D. Frazer, C. Deck, T. Koyanagi, K. Terrani, and P. Hosemann, Int. Congr. Adv. Nucl. Power Plants, 911 (2016)

  26. Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, and L.L. Snead, J. Nucl. Mater. 448, 448 (2014).

    Article  Google Scholar 

  27. C.H. Zhang, S.E. Donnelly, V.M. Vishnyakov, and J.H. Evans, J. Appl. Phys. 94, 6017 (2003).

    Article  Google Scholar 

  28. G. Hong-Yan, G. Chang-Chun, X. Min, G. Li-Ping, C. Ji-Hong, and Y. Qing-Zhi, Chin. Phys. B 24, 3 (2015).

    Google Scholar 

  29. M.I. Idris, H. Konishi, M. Imai, K. Yoshida, and T. Yano, Energy Procedia 71, 328–336 (2015).

    Article  Google Scholar 

  30. L.L. Snead and J.C. Hay, J. Nucl. Mater. 273, 213 (1999).

    Article  Google Scholar 

  31. A.L. Ryazanov, A.V. Klaptsov, A. Kohyama, and H. Kishimoto, J. Nucl. Mater. 301–311, 1107 (2002).

    Article  Google Scholar 

  32. V. Heera, J. Stoemenos, R. Kogler, and W. Skorupa, J. Appl. Phys. 77, 2999 (1995).

    Article  Google Scholar 

  33. W.J. Weber, L.M. Wang, N. Yu, and N.J. Hess, Mater. Sci. Eng. A 253, 62 (1998).

    Article  Google Scholar 

  34. S.M. Tunhuma, M. Diale, J.M. Nel, M.J. Madito, T.T. Hlatshwayo, and F.D. Auret, Nucl. Instrum. Methods Phys. Res., Sect. B (2018)

  35. Y. Yang, C. Zhang, C. Su, Z. Ding, and Y. Song, Nucl. Instrum. Methods Phys. Res. Sect. B 449, 54 (2019).

    Article  Google Scholar 

  36. J.F. Barbot, M.F. Beaufort, M. Texier, and C. Tromas, J. Nucl. Mater. 413, 162 (2011).

    Article  Google Scholar 

  37. C. Tromas, V. Audurier, S. Leclerc, M.F. Beaufort, A. Declemy, and J.F. Barbot, J. Nucl. Mater. 373, 142 (2008).

    Article  Google Scholar 

  38. B.S. Li, C.H. Zhang, H.H. Zhang, T. Shibayama, and Y.T. Yang, Vacuum 86, 452 (2011).

    Article  Google Scholar 

  39. S. Leclerc, A. Declémy, M.F. Beaufort, C. Tromas, and J.F. Barbot, J. Appl. Phys. 98, 113506 (2005).

    Article  Google Scholar 

  40. L.L. Snead, S.J. Zinkle, J.C. Haym, and M.C. Osborne, Nucl. Instrum. Methods Phys. Res. Sect. B 141, 123 (1998).

    Article  Google Scholar 

  41. A. Debelle, A. Boulle, A. Chartier, F. Gao, and W.J. Weber, Phys. Rev. B Condens. Matter Mater. Phys. 90, 174112 (2014).

    Article  Google Scholar 

  42. J.M. Williams, C.J. McHargue, and B.R. Appleton, Nucl. Instrum. Methods Phys. Res. 209–210, 317 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Frances Allen for assistance with ORION HIM operation. Support was provided by NSF-DMR Program # 1807822. Further, the authors want to thank General Atomics for providing the sample material for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hosemann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambat, M.V., Frazer, D., Popovic, M.P. et al. Localized Helium Implantation in SiCf/SiCm Composites Comparing Fiber and Matrix Swelling. JOM 72, 170–175 (2020). https://doi.org/10.1007/s11837-019-03869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03869-y

Navigation