Skip to main content
Log in

Boron Removal from Industrial Silicon by Combined Slagging and Acid Leaching Treatment Technology

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Boron removal is a challenge in the purification of industrial silicon. A new technology for boron removal from silicon using chlorine slag flux refining followed by acid leaching treatment has been investigated and is described herein. The boron in silicon is oxidized by the slag flux and enters into the slag phase. However, some soluble boron remains in the refined silicon, and this can then be further removed by acid leaching treatment. The boron is reduced from 22 parts per million by weight (ppmw) to 1.37 ppmw with removal efficiency of 93.7% through ternary CaO-SiO2-CaCl2 slag flux treatment. After acid leaching treatment, the boron in the refined silicon is further reduced to 0.81 ppmw and the removal efficiency of boron reaches 96.3%. This result shows that this new technology has an obvious role in the further enhancement of boron removal. Using 3 wt.% B-doped silicon alloy as the raw material for purification, the results demonstrate the role of the acid leaching treatment in soluble boron removal from the refined silicon. The oxidization and dissolution behaviors of boron in silicon during the slagging and acid leaching treatment are described and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Li, K. Wang, S.Q. Ren, D.C. Jiang, S. Shi, Y. Tan, F. Wang, and H.M. Noor ul Huda Khan Asghar, Sol. Energy Mater. Sol. Cells 186, 50 (2018).

    Article  Google Scholar 

  2. R.H. Hopkins and A. Rohatgi, J. Cryst. Growth 75, 67 (1986).

    Article  Google Scholar 

  3. J.J. Wu, Y.Q. Zhou, W.H. Ma, M. Xu, and B. Yang, Metall. Mater. Trans. B 48, 22 (2017).

    Article  Google Scholar 

  4. J.J. Wu, D. Yang, M. Xu, W.H. Ma, Q. Zhou, Z.F. Xia, Y. Lei, K.X. Wei, S.Y. Li, Z.J. Chen, and K.Q. Xie, Sep. Purif. Rev. (2018). https://doi.org/10.1080/15422119.2018.1523191.

    Article  Google Scholar 

  5. M.A. Martorano, J.B.F. Neto, T.S. Oliveira, and T.O. Tsubaki, Mater. Sci. Eng. B 176, 217 (2011).

    Article  Google Scholar 

  6. W.Y. Jiang, W.Z. Yu, H. Qin, Y. Xue, C.M. Li, and X.W. Lv, Int. J. Hydrogen Energy 44, 13502 (2019).

    Article  Google Scholar 

  7. T. Yoshikawa, K. Arimura, and K. Morita, Metall. Mater. Trans. B 36, 837 (2005).

    Article  Google Scholar 

  8. C. Alemany and C. Trassy, Sol. Energy Mater. Sol. Cells 72, 41 (2002).

    Article  Google Scholar 

  9. L.K. Jakobsson and M. Tangstad, Metall. Mater. Trans. B 49, 1699 (2018).

    Article  Google Scholar 

  10. Y. Wang and K. Morita, J. Sustain. Metall. 1, 126 (2015).

    Article  Google Scholar 

  11. J. Cai, J.T. Li, W.H. Chen, C. Chen, and X.T. Luo, Trans. Nonferrous Met. Soc. China 21, 1402 (2011).

    Article  Google Scholar 

  12. F.M. Wang, J.J. Wu, W.H. Ma, M. Xu, Y. Lei, and B. Yang, Sep. Purif. Technol. 170, 248 (2016).

    Article  Google Scholar 

  13. L. Zhang, Y. Tan, F.M. Xu, J.Y. Li, H.Y. Wang, and Z. Gu, Sep. Purif. Technol. 48, 1140 (2013).

    Google Scholar 

  14. E.J. Jung, B.M. Moon, S.H. Seok, and D.J. Min, Energy 66, 35 (2014).

    Article  Google Scholar 

  15. Z. Wang, Z. Ge, J.H. Liu, G.Y. Qian, and B. Du, Sep. Purif. Technol. 199, 134 (2018).

    Article  Google Scholar 

  16. R.C. Liu, P.P. Tang, K.Y. Lin, B.H. Liu, C.Y. You, and Q. Wang, Chem. Eng. 42, 15 (2014).

    Article  Google Scholar 

  17. I.C. Santos, A.P. Goncalves, C.S. Santos, M. Almeida, M.H. Afonso, and M.J. Cruz, Hydrometallurgy 23, 237 (1990).

    Article  Google Scholar 

  18. Y.H. Sun, Q.H. Ye, C.J. Guo, H.Y. Chen, X. Lang, F. David, Q.W. Luo, and C.M. Yang, Hydrometallurgy 139, 64 (2013).

    Article  Google Scholar 

  19. J.J. Wu, Y.L. Li, W.H. Ma, K.X. Wei, B. Yang, and Y.N. Dai, Trans. Nonferrous Met. Soc. China 24, 1231 (2014).

    Article  Google Scholar 

  20. J.J. Wu, M. Xu, K. Liu, W.H. Ma, B. Yang, and Y.N. Dai, J. Min. Metall. B 50, 83 (2014).

    Article  Google Scholar 

  21. M.D. Johnston and M. Barati, J. Non-Cryst. Solids 357, 970 (2011).

    Article  Google Scholar 

  22. L.A.V. Teixeira and K. Morita, ISIJ Int. 49, 783 (2009).

    Article  Google Scholar 

  23. Y. Wang, X.D. Ma, and K. Morita, Metall. Mater. Trans. B 45, 334 (2014).

    Article  Google Scholar 

  24. C.H. Lu, T.Y. Tang, Z.L. Sheng, P.F. Xing, and X.T. Luo, Vacuum 143, 7 (2017).

    Article  Google Scholar 

  25. A. Hosseinpour and L.T. Khajavi, J. Alloys Compd. 768, 545 (2018).

    Article  Google Scholar 

  26. Z. Ding, W.H. Ma, K.X. Wei, J.J. Wu, Y. Zhou, and K.Q. Xie, J. Non-Cryst. Solids 358, 2708 (2012).

    Article  Google Scholar 

  27. Y.L. Li, J.J. Wu, and W.H. Ma, Sep. Purif. Technol. 49, 1946 (2014).

    Google Scholar 

  28. A. Schei and J. Kr, Tuset, and H (Tapir Academic: Tveit, 1998).

    Google Scholar 

  29. J.J. Wu, Z.F. Xia, W.H. Ma, F.M. Wang, Y.Q. Zhou, and K.X. Wei, Mater. Sci. Semicond. Process. 57, 59 (2017).

    Article  Google Scholar 

  30. H.X. Lai, L.Q. Huang, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, and X.T. Luo, Hydrometallurgy 156, 173 (2015).

    Article  Google Scholar 

  31. H.X. Lai, Z.L. Sheng, J.T. Li, P.F. Xing, and X.T. Luo, Sep. Purif. Technol. 191, 257 (2018).

    Article  Google Scholar 

  32. S.K. Sahu and E. Asselin, Hydrometallurgy 124, 120 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (51574133, 21563017 and 51104080) and Natural Science Foundation of Yunnan Province in China (2016FA022 and 2014FB124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wu, J., Ma, W. et al. Boron Removal from Industrial Silicon by Combined Slagging and Acid Leaching Treatment Technology. JOM 72, 2670–2675 (2020). https://doi.org/10.1007/s11837-019-03847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03847-4

Navigation