Skip to main content
Log in

Paralinear Oxidation of Cr-Si-C-Coated C/SiC at 1300°C in Wet and Dry Air Environments

  • Design, Development, and Manufacturing of Refractory Metals & Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The oxidation kinetics of a Cr3Si-Cr7C3/SiC/SiC-coated C/SiC were comparatively investigated in dry and wet air at 1300°C under 1 atm. After oxidation for 10 h, Cr2O3 and SiO2 were produced in both oxidations. However, a larger amount of SiO2 formed during the wet air oxidation. After the dry air oxidation, the surface of Cr3Si-Cr7C3/SiC/SiC coating became relatively loose with many pores. After the wet air oxidation, the surface of Cr3Si-Cr7C3/SiC/SiC coating became undulating and loose with notable damage at the position of bulges. The Cr3Si-Cr7C3/SiC/SiC-coated C/SiC showed paralinear weight gains in both oxidation environments. Although the initial weight gains within the first 1 h in the wet air oxidation condition were higher, the gradual weight gains thereafter were lower. The parabolic rate constant for oxide formation and the linear rate constant for oxide volatilization in the wet air oxidation condition were higher than those in the dry air oxidation condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Naslain and F. Christin, MRS Bull. 28, 654 (2003).

    Article  Google Scholar 

  2. S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, and A. Gessler, Acta Astronaut. 55, 409 (2004).

    Article  Google Scholar 

  3. J. Swain, K. Gaurav, D. Singh, P.K. Sen, and S.K. Bohidar, Inter. J. Innov. Res. Sci. Technol. 1, 290 (2014).

    Google Scholar 

  4. A. Sommers, Q. Wang, X. Han, C. T’Joen, Y. Park, and A. Jacobi, Appl. Therm. Eng. 30, 1277 (2010).

    Article  Google Scholar 

  5. W. Krenkel, Inter. J. App. Ceram. Technol. 1, 188 (2004).

    Article  Google Scholar 

  6. J.R. Strife and J.E. Sheehan, Ceram. Bull. 67, 369 (1998).

    Google Scholar 

  7. F.J. Buchanan and J.A. Little, Corros. Sci. 35, 1243 (1993).

    Article  Google Scholar 

  8. W. Li, Y. Xiang, B.F. Zhang, S. Wang, J. Liu, Q.G. Lin, and J. Yang, Corros. Sci. 74, 149 (2013).

    Article  Google Scholar 

  9. S.J. Wu, L.F. Cheng, L.T. Zhang, and Y.D. Xu, Surf. Coat. Technol. 200, 4489 (2006).

    Article  Google Scholar 

  10. L. Li, H.J. Li, H.J. Lin, L. Zhuang, S.L. Wang, T. Feng, X.Y. Yao, and Q.G. Fu, Surf. Coat. Technol. 302, 56 (2016).

    Article  Google Scholar 

  11. S.J. Wu, Y.G. Wang, Q. Guo, B. Guo, and L. Luo, Mater. Sci. Eng., A 644, 268 (2015).

    Article  Google Scholar 

  12. E.J. Opila, J. Am. Ceram. Soc. 82, 625 (1999).

    Article  Google Scholar 

  13. S.J. Wu, L.F. Cheng, and L.T. Zhang, Corros. Sci. 66, 111 (2013).

    Article  Google Scholar 

  14. R.B. Rebak, V.K. Gupta, and M. Larsen, JOM 70, 1484 (2018).

    Article  Google Scholar 

  15. E.J. Opila, N.S. Jacobson, D.L. Myers, and E.H. Copland, JOM 58, 22 (2006).

    Article  Google Scholar 

  16. S.J. Wu, B. Guo, T.B. Li, and D.M. Gui, Constr. Build. Mater. 81, 11 (2015).

    Article  Google Scholar 

  17. N.K. Othman, J.Q. Zhang, and D.J. Young, Corros. Sci. 52, 2827 (2010).

    Article  Google Scholar 

  18. Y.P. Jacob, V.A.C. Haanappel, M.F. Stroosnijder, H. Buscail, P. Fielitz, and G. Borchardt, Corros. Sci. 44, 2027 (2002).

    Article  Google Scholar 

  19. A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxid. Met. 59, 517 (2003).

    Article  Google Scholar 

  20. H. Asteman, J.E. Svensson, and L.G. Johansson, Corros. Sci. 44, 2635 (2002).

    Article  Google Scholar 

  21. N.K. Othman, N. Othman, J. Zhang, and D.J. Young, Corros. Sci. 51, 3039 (2009).

    Article  Google Scholar 

  22. Y.N. Kok and P.E.H. Hovsepian, Surf. Coat. Technol. 201, 3596 (2006).

    Article  Google Scholar 

  23. J.H. Ma, Y.L. Gu, L. Shi, L.Y. Chen, Z.H. Yang, and Y.T. Qian, J. Alloy. Compd. 375, 249 (2004).

    Article  Google Scholar 

  24. S.V. Raj, Mater. Sci. Eng., A 192–193, 583 (1995).

    Article  Google Scholar 

  25. P. Berthod, Oxid. Met. 64, 235 (2005).

    Article  Google Scholar 

  26. C.S. Tedmon, J. Electrochem. Soc. 113, 766 (1967).

    Article  Google Scholar 

  27. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Article  Google Scholar 

  28. P. Tunthawiroon, Y.P. Li, N. Tang, Y. Koizumi, and A. Chiba, Corros. Sci. 95, 88 (2015).

    Article  Google Scholar 

  29. J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, and W.J. Quadakkers, Corros. Sci. 48, 3428 (2006).

    Article  Google Scholar 

  30. J. Zurek, D.J. Young, E. Essuman, M. Hänsel, H.J. Penkalla, L. Niewolak, and W.J. Quadakkers, Mater. Sci. Eng., A 477, 259 (2008).

    Article  Google Scholar 

  31. B.E. Deal and A.S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  Google Scholar 

  32. H. Nickel, Y. Wouters, M. Thiele, and W.J. Quadakkers, J. Anal. Chem. 361, 540 (1998).

    Google Scholar 

  33. G.R. Holcomb, Oxid. Met. 69, 163 (2008).

    Article  Google Scholar 

  34. E.J. Opila, J. Am. Ceram. Soc. 86, 1238 (2003).

    Article  Google Scholar 

  35. B.B. Karki and L. Stixrude, Phys. Rev. Lett. 104, 215901 (2015).

    Article  Google Scholar 

  36. S.J. Wu, L.F. Cheng, J. Zhang, L.T. Zhang, X.G. Luan, H. Mei, and P. Fang, Mater. Sci. Eng., A 435–436, 412 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the fund of the Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory (6142911020105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoujun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Ma, S., Chen, Y. et al. Paralinear Oxidation of Cr-Si-C-Coated C/SiC at 1300°C in Wet and Dry Air Environments. JOM 72, 361–367 (2020). https://doi.org/10.1007/s11837-019-03841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03841-w

Navigation