Skip to main content
Log in

Study on Fe-xGO Composites Prepared by Selective Laser Melting: Microstructure, Hardness, Biodegradation and Cytocompatibility

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The problem of the degradation rate being too slow is a key technical bottleneck to clinical applications for pure iron (Fe), a promising candidate biodegradable metal. This work used powders of pure Fe and graphene oxide (GO) to prepare Fe-xGO composites (x = 0.4 wt.%, 0.8 wt.%, 1.2 wt.%, and 1.6 wt.%) via selective laser melting (SLM), aiming to obtain a higher degradation rate. The microstructure, hardness, biodegradation and cytocompatibility were investigated. The degradation rate of the SLMed Fe-xGO composites was faster than that of SLMed Fe, due to incorporating GO into Fe. The GO content had a significant effect on the microstructure, hardness and degradation rate. The SLMed Fe-0.8 GO composite presented the finest, relatively uniform grains, had the maximum degradation rate, density and hardness, and had good cytocompatibility. The mechanisms were also clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.Q. Xie, H. Takada, and H. Kanetaka, Mater. Sci. Eng. A 671, 48 (2016).

    Article  Google Scholar 

  2. S.G. Wang, Y.C. Xu, J. Zhou, H.Y. Li, J. Chang, and Z.G. Huan, Bioact. Mater. 2, 10 (2017).

    Article  Google Scholar 

  3. S. Johnston, Z. Shi, J. Venezuela, C. Wen, M.S. Dargusch, and A. Atrens, JOM 71, 1406 (2019).

    Article  Google Scholar 

  4. J. Cheng and Y.F. Zheng, J. Biomed. Mater. Res. B 101B, 485 (2013).

    Article  Google Scholar 

  5. M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf, Heart 86, 563 (2001).

    Article  Google Scholar 

  6. M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schna-Kenburg, Biomaterials 27, 4955 (2006).

    Article  Google Scholar 

  7. M. Schinhammer, A.C. Hanzi, J.F. Loffler, and P.J. Uggowitzer, Acta Biomater. 6, 1705 (2010).

    Article  Google Scholar 

  8. X.D. Yan, P. Wan, L. Tan, M. Zhao, C. Shuai, and Y. Ke, Mater. Sci. Eng. B 229, 105 (2018).

    Article  Google Scholar 

  9. B. Liu and Y.F. Zheng, Acta Biomater. 7, 1407 (2011).

    Article  Google Scholar 

  10. Z.Y. Zhao, R.G. Guan, X.H. Guan, Z.X. Feng, X. Zhen, H. Chen, and Y. Chen, Adv. Eng. Mater. 17, 663 (2015).

    Article  Google Scholar 

  11. P.S. Bharadiya, M.K. Singh, and S. Mishra, JOM 71, 838 (2019).

    Article  Google Scholar 

  12. H. Zhang, X.H. Wang, Y.P. Li, C.S. Guo, and C.M. Zhang, JOM 71, 541 (2019).

    Article  Google Scholar 

  13. H. Kwon, J. Mondal, K.A. AlOgab, V. Sammelselg, M. Takamichi, and A. Kawaski, J. Alloys Compd. 698, 807 (2017).

    Article  Google Scholar 

  14. S. Ding, T. Xiang, C. Li, S. Zheng, J. Wang, M. Zhang, C. Dong, and W. Chan, Mater. Design 117, 280 (2017).

    Article  Google Scholar 

  15. B. Yilbas, A. Ibrahim, H. Ali, M. Khaled, and T. Laoui, Appl. Surf. Sci. 442, 213 (2018).

    Article  Google Scholar 

  16. R. Karthik and S. Thambidurai, J. Alloys Compd. 715, 254 (2017).

    Article  Google Scholar 

  17. R. Xu, M. Zhao, Y. Zhao, L. Liu, C. Liu, C. Gao, C. Shuai, and A. Atrens, Mater. Lett. 237, 253 (2019).

    Article  Google Scholar 

  18. A. Macpherson, X.P. Li, P. McCormick, L. Ren, K. Yang, and T.B. Sercombe, JOM 69, 2719 (2017).

    Article  Google Scholar 

  19. C. Liu, M.C. Zhao, Y.C. Zhao, L. Zhang, D.F. Yin, Y. Tian, Y.Y. Shan, K. Yang, and A. Atrens, Mater. Sci. Eng. A 755, 50 (2019).

    Article  Google Scholar 

  20. C. Liu, Q.Q. Shi, W. Yan, C.G. Shen, K. Yang, Y. Shan, and M. Zhao, J. Mater. Sci. Technol. 35, 266 (2019).

    Article  Google Scholar 

  21. C. Liu, M. Zhao, T. Unenbayar, Y.C. Zhao, B. Xie, Y. Tian, Y.Y. Shan, and K. Yang, Acta Metall. Sin. (English Lett.) 32, 825 (2019).

    Article  Google Scholar 

  22. M. Moravej, F. Prima, M. Fiset, and D. Mantovani, Acta Biomater. 6, 1726 (2010).

    Article  Google Scholar 

  23. C. Shuai, H. Sun, C. Gao, P. Feng, W. Guo, Y. Yang, M. Zhao, S. Yang, F. Yuan, and S. Peng, J. Mech. Behav. Biomed. Mater. 75, 423 (2017).

    Article  Google Scholar 

  24. Y. Zhao, Y. Tang, M. Zhao, L. Liu, C. Gao, C. Shuai, R. Zeng, A. Atrens, and Y. Lin, Adv. Eng. Mater. 21, 1900314 (2019).

    Article  Google Scholar 

  25. Y. Zhao, M. Zhao, R. Xu, L. Liu, J.X. Tao, C. Gao, C. Shuai, and A. Atrens, J. Alloys Compd. 770, 549 (2019).

    Article  Google Scholar 

  26. M.C. Zhao, M. Liu, G. Song, and A. Atrens, Corros. Sci. 50, 1939 (2008).

    Article  Google Scholar 

  27. H. Kato, Y. Todaka, M. Umemoto, M. Haga, and E. Sentoku, Wear 336–337, 58 (2015).

    Article  Google Scholar 

  28. W. Zhang, L.L. Tan, D.R. Li, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens, and M.C. Zhao, J. Mater. Sci. Technol. 35, 777 (2019).

    Article  Google Scholar 

  29. M. Zhao, Y. Deng, and X. Zhang, Scr. Mater. 58, 560 (2008).

    Article  Google Scholar 

  30. K.V. Zakharchenko, M.I. Katsnelson, and A. Fasolino, Phys. Rev. Lett. 102, 046808 (2009).

    Article  Google Scholar 

  31. M. Rashad, F. Pan, J. Zhang, and M. Asif, J. Alloys Compd. 646, 223 (2015).

    Article  Google Scholar 

  32. X. Yan, M. Zhao, Y. Yang, L. Tan, Y. Zhao, D. Yin, K. Yang, and A. Atrens, Corros. Sci. 156, 125 (2019).

    Article  Google Scholar 

  33. M.C. Zhao, Y.C. Zhao, D.F. Yin, S. Wang, Y. Shangguan, C. Liu, L. Tan, and C. Shuai, Acta Metall. Sin. (English Lett.) 32, 1195 (2019).

    Article  Google Scholar 

  34. H. Hermawan, A. Purnama, D. Dube, J. Couet, and D. Mantovani, Acta Biomater. 6, 1852 (2010).

    Article  Google Scholar 

  35. A. Yamamoto, R. Honma, and M. Sumita, J. Biomed. Mater. Res. 39, 331 (1998).

    Article  Google Scholar 

  36. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, Biomaterials 30, 484 (2009).

    Article  Google Scholar 

  37. K.A. Duck and J.R. Connor, Biometals 29, 573 (2016).

    Article  Google Scholar 

  38. S. Zhu, N. Huang, L. Xu, Y. Zhang, H. Liu, H. Sun, and Y. Leng, Mater. Sci. Eng. C 29, 1589 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Financially supported by Natural Science Foundation of China (No. 51874368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chun Zhao.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Data Availability Statement

All data included in this study are available upon request by contact with the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YC., Tang, Y., Zhao, MC. et al. Study on Fe-xGO Composites Prepared by Selective Laser Melting: Microstructure, Hardness, Biodegradation and Cytocompatibility. JOM 72, 1163–1174 (2020). https://doi.org/10.1007/s11837-019-03814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03814-z

Navigation