Skip to main content
Log in

Effect of Heating Mode on Thermal Stability of Nanocrystalline Hydroxyapatite

  • Characterization of Advanced Biomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study reports the effect of heating mode on the thermal stability of nanocrystalline hydroxyapatite (HA) by comparing conventional electric resistance heating and microwave heating of HA to 1100°C under the same experimental conditions. It was found that, compared with conventional heating, microwave heating of HA resulted in less hydroxyapatite decomposition and a higher Ca/P molar ratio of the product (1.42 versus 1.37) in association with a smaller lattice contraction of the phase probably caused by the selective thermal effect of microwave radiation. It also produced smaller grains (56.54 nm versus 64.32 nm) along with a higher specific surface area and larger total pore volume, featured by the differences of 36.80% and 79.29%, respectively. Moreover, it led to more homogeneous pore distribution. These physicochemical features are expected to contribute to superior mechanical and biologic properties of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.S. Hammood, S.S. Hassan, and M.T. Alkhafagy, JOM 71, 272 (2019).

    Article  Google Scholar 

  2. E.K. Girija, G.S. Kumar, A. Thamizhavel, Y. Yokogawa, and S.N. Kalkura, Powder Technol. 225, 190 (2012).

    Article  Google Scholar 

  3. S. Pazarlioglu and S. Salman, J. Aust. Cream. Soc. 53, 391 (2017).

    Article  Google Scholar 

  4. M.T. Choy, C.Y. Tang, L. Chen, C.T. Wong, and C.P. Tsui, Mater. Sci. Eng. C 42, 746 (2014).

    Article  Google Scholar 

  5. H. Zhang, Y. Yan, Y. Wang, and S. Li, Adv. Eng. Mater. 4, 916 (2002).

    Article  Google Scholar 

  6. J. Kamieniak, P.J. Kelly, C.E. Banks, and A.M. Doyle, J. Inorg. Organomet. Polym. 28, 84 (2018).

    Article  Google Scholar 

  7. N.H.M. Alsabeeha, S.Y. Ma, and M.A. Atieh, Int. J. Oral Maxillofac. Implants 27, 1123 (2012).

    Google Scholar 

  8. C. Sarkar, S.K. Sahu, A. Sinha, J. Chakraborty, and S. Garai, Mater. Sci. Eng. C 97, 388 (2019).

    Article  Google Scholar 

  9. J. Tuukkanen and M. Nakamura, Curr. Pharm. Des. 23, 3786 (2017).

    Article  Google Scholar 

  10. L.I. Wang, X.F. Wang, C.L. Yu, and Y.Q. Zhao, Sci. Sinter. 47, 107 (2015).

    Article  Google Scholar 

  11. R.P. Singh and P. Kumar, Adv. Appl. Ceram. 117, 436 (2018).

    Article  Google Scholar 

  12. S.F. Ou, S.Y. Chiou, and K.L. Ou, Ceram. Int. 39, 3809 (2013).

    Article  Google Scholar 

  13. P.Y. Chen, S.F. Wang, R.R. Chien, C.S. Tu, K.C. Feng, C.S. Chen, K.Y. Hung, and V.H. Schmidt, Cream. Int. 45, 16226 (2019).

    Article  Google Scholar 

  14. P. Nasker, A. Samanta, S. Rudra, A. Sinha, A.K. Mukhopadhyay, and M. Das, J. Mech. Behav. Biomed. Mater. 95, 136 (2019).

    Article  Google Scholar 

  15. A. Rapacz-Kmita, C. Paluszkiewicz, A. Slosarczyk, and Z. Paszkiewicz, J. Mol. Struct. 744–747, 653 (2005).

    Article  Google Scholar 

  16. A. Harabi, D. Belamri, N. Karboua, and F.Z. Mezahi, J. Therm. Anal. Calorim. 104, 383 (2011).

    Article  Google Scholar 

  17. S. Vijayan and H. Varma, Mater. Lett. 56, 827 (2002).

    Article  Google Scholar 

  18. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).

    Article  Google Scholar 

  19. M.B. Schutz, L.S. Xiao, T. Lehnen, T. Fischer, and S. Mathur, Int. Mater. Rev. 63, 341 (2018).

    Article  Google Scholar 

  20. S. Meejoo, W. Maneeprakorn, and P. Winotai, Thermochim. Acta 447, 115 (2006).

    Article  Google Scholar 

  21. J.F. Nie, J. Zhou, X.G. Huang, L. Wang, G.Z. Liu, and J.P. Cheng, Cream. Int. 45, 13647 (2019).

    Article  Google Scholar 

  22. X.Y. Shi, J. Zhou, G.Z. Liu, and L. Wang, J. Inorg. Organomet. Ploym. Mater. 27, 955 (2017).

    Article  Google Scholar 

  23. Q. Peng, H. Tang, Z. Tang, and Z. Peng, Characterization of Minerals, Metals, and Materials 2019 (The Minerals, Metals & Materials Society, 2019), pp. 225–235.

  24. P. Feng, M. Niu, C. Gao, S. Peng, and C. Shuai, Sci. Rep. 4, 5599 (2014).

    Article  Google Scholar 

  25. J. Wang and L.L. Shaw, J. Am. Ceram. Soc. 93, 601 (2010).

    Article  Google Scholar 

  26. H.C. Park, D.J. Baek, Y.M. Park, and S.Y. Yoon, J. Mater. Sci. 39, 2541 (2004).

    Google Scholar 

  27. C.J. Liao, F.H. Lin, K.S. Chen, and J.S. Sun, Biomaterials 20, 1807 (1999).

    Article  Google Scholar 

  28. A.M. Sofronia, R. Baies, E.M. Anghel, C.A. Marinescu, and S. Tanasescu, Mater. Sci. Eng. C 43, 153 (2014).

    Article  Google Scholar 

  29. R. Quan, C. Wang, H. Wang, X. Wei, and Z. Zhao, Asian J. Chem. 25, 9203 (2013).

    Article  Google Scholar 

  30. P.S. Prevéy, J. Therm. Spray Technol. 9, 369 (2000).

    Article  Google Scholar 

  31. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, and R.H. Doremus, J. Mater. Sci. 11, 2027 (1976).

    Article  Google Scholar 

  32. O. Kaygili, S.V. Dorozhkin, T. Ates, A.A. Al-Ghamdi, and F. Yakuphanoglu, Ceram. Int. 40, 9395 (2014).

    Article  Google Scholar 

  33. R.C. Moore, M.J. Rigali, and P. Brady, Environ. Pollut. 218, 1102 (2016).

    Article  Google Scholar 

  34. B. Viswanath and N. Ravishankar, Biomaterials 29, 4855 (2008).

    Article  Google Scholar 

  35. H. Tovstonoh, O. Sych, and V. Skorokhod, Process. Appl. Ceram. 8, 1 (2014).

    Article  Google Scholar 

  36. S. Kandambeth, V. Venkatesh, D.B. Shinde, S. Kumari, A. Halder, S. Verma, and R. Banerjee, Nat. Commun. 6, 6786 (2015).

    Article  Google Scholar 

  37. Y. Zhang, J. Liu, Z. Su, B. Liu, M. Lu, G. Li, C. Anderson, and T. Jiang, Constr. Build. Mater. 177, 184 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The work was sponsored by the Fundamental Research Funds for the Central Universities of Central South University (Grant 2018zzts040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangui Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Wang, Y. & Tang, Z. Effect of Heating Mode on Thermal Stability of Nanocrystalline Hydroxyapatite. JOM 72, 1673–1679 (2020). https://doi.org/10.1007/s11837-019-03806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03806-z

Navigation