Skip to main content
Log in

Fully Stretchable Electromagnet Using Magnetoactive PDMS Sponges and Metallic Coils

  • Functional Nanomaterials for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Stretchable and flexible devices are being widely developed for the application of modern electronics to biological systems which are soft, elastic, and curved. However, stretchable and flexible electromagnetic and/or magnetic devices are relatively rare, regardless of their importance in many electromechanical systems. Therefore, this study develops a fully stretchable electromagnet using a metallic coil and a magnetoactive polydimethylsiloxane (PDMS) sponge embedded with iron microparticles. In a cylindrical prototype, the magnetoactive PDMS sponge acts as a ferromagnetic core of the electromagnet, enhancing the magnetic fields to ~ 300% of that of a control device without the iron microparticles. The microscale pores of the PDMS sponge and the spring structures of the metallic coil enable the elongation of the electromagnet up to ~ 115%. Similarly, we fabricated and experimentally characterized a patch-shaped prototype of a fully stretchable electromagnet, and discussed its practical limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Rogers, T. Someya, and Y. Huang, Science 327, 5973 (2010).

    Article  Google Scholar 

  2. S. Yao and Y. Zhu, JOM 68, 4 (2016).

    Article  Google Scholar 

  3. M. Segev-Bar and H. Haick, ACS Nano 7, 10 (2013).

    Article  Google Scholar 

  4. C. Pang, C. Lee, and K.-Y. Suh, J. Appl. Polym. Sci. 130, 3 (2013).

    Article  Google Scholar 

  5. S.P. Adiga, L.A. Curtiss, J.W. Elam, M.J. Pellin, C.-C. Shih, C.-M. Shih, S.-J. Lin, Y.-Y. Su, S.D. Gittard, J. Zhang, and R.J. Narayan, JOM 60, 3 (2008).

    Article  Google Scholar 

  6. F. Xu and Y. Zhu, Adv. Mater. 24, 37 (2012).

    Google Scholar 

  7. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, and A. Mishchenko, Nat. Nanotechnol. 8, 2 (2013).

    Article  Google Scholar 

  8. N. Li, Z. Chen, W. Ren, F. Li, and H.M. Cheng, Proc. Natl. Acad. Sci. USA 109, 43 (2012).

    Google Scholar 

  9. A. Fassler and C. Majidi, Smart Mater. Struct. 22, 5 (2013).

    Article  Google Scholar 

  10. B.C. Kim, C.O. Too, J.S. Kwon, J.M. Ko, and G.G. Wallace, Synth. Met. 161, 11 (2011).

    Google Scholar 

  11. G.H. Gelinck, H.E. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B. van der Putten, T.C. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J. van Rens, and D.M. de Leeuw, Nat. Mater. 3, 2 (2004).

    Article  Google Scholar 

  12. M.E. Galvin, JOM 49, 3 (1997).

    Article  Google Scholar 

  13. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, Nature 499, 7459 (2013).

    Article  Google Scholar 

  14. J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, and S.H. Ko, Nanoscale 4, 20 (2012).

    Google Scholar 

  15. S. Takamatsu, T. Yamashita, T. Imai, and T. Itoh, Sens. Actuators A 220, 153 (2014).

    Article  Google Scholar 

  16. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, and A. Islam, Science 333, 6044 (2011).

    Google Scholar 

  17. S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, and R. Wang, Science 344, 6179 (2014).

    Google Scholar 

  18. J. Jones, S.P. Lacour, S. Wagner, and Z. Suo, J. Vac. Sci. Technol. A 22, 1723 (2004).

    Article  Google Scholar 

  19. C.W. Park, S.W. Jung, S.C. Lim, J.-Y. Oh, B.S. Na, S.S. Lee, H.Y. Chu, and J.B. Koo, Microelectron. Eng. 113, 55 (2014).

    Article  Google Scholar 

  20. S. Hong, Y. Jung, R. Yen, H.F. Chan, K.W. Leong, G.A. Truskey, and X. Zhao, Lab Chip 14, 3 (2014).

    Article  Google Scholar 

  21. C. Yamahata, C. Lotto, E. Al-Assaf, and M.A.M. Gijs, Microfluid. Nanofluid. 1, 3 (2004).

    Google Scholar 

  22. A. Turco, C. Malitesta, G. Barillaro, A. Greco, A. Maffezzoli, and E. Mazzotta, J. Mater. Chem. A 3, 34 (2015).

    Article  Google Scholar 

  23. S.W. Jin, J. Park, S.Y. Hong, H. Park, Y.R. Jeong, J. Park, S.S. Lee, and J.S. Ha, Sci. Rep. 5, 11695 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the research fund of Hanyang University (HY-2015-N) and the “Human Resources Program in Energy Technology” of the Korean Institute of Energy Technology Evaluation and Planning (KETEP), granted by the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174010201310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Chul Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.I., Jeon, S. & Lee, W.C. Fully Stretchable Electromagnet Using Magnetoactive PDMS Sponges and Metallic Coils. JOM 71, 4556–4561 (2019). https://doi.org/10.1007/s11837-019-03788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03788-y

Navigation