Skip to main content
Log in

Effect of Al Addition on Structural, Magnetic, and Antimicrobial Properties of Ag Nanoparticles for Biomedical Applications

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study describes the synthesis of silver (Ag) and silver aluminate (AgAlO2) nanoparticles (NPs) by a facile and low-cost flash method. X-ray diffraction measurements showed that the Ag NPs had a single-phase cubic spinel structure, whereas the AgAlO2 NPs exhibited a hexagonal structure. Field-emission scanning electron microscopy showed that, by adding Al ions to the Ag NPs, the grain size increased. The saturation magnetization (Ms) and magnetic susceptibility (χ) of the AgAlO2 NPs were 1.6 and 2.3 times higher, respectively, than those of the Ag NPs. In addition, the coercivity (Hc) of the AgAlO2 NPs was 3.1 times lower than that of the Ag NPs, which enables the application of Ag NPs in magnetic targeting of tumors and separators, whereas the application of AgAlO2 NPs is enabled in magnetic field sensors. Antimicrobial tests showed that Ag and AgAlO2 NPs exhibited significant activity against bacterial microorganisms; however, only the Ag NPs exhibited significant activity against fungal microorganisms. In particular, the Ag NPs were highly active against Bacillus strains and Candida albicans yeast, whereas the AgAlO2 NPs exhibited strong activity against Staphylococcus aureus. Therefore, the Ag and AgAlO2 nanoparticles, using this facile and low-cost method, are highly suitable for applications in antibacterial drugs, and the Ag NPs can also be applied as antifungal drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E.J.W. List, Adv. Funct. Mater. 17, 3111 (2007).

    Article  Google Scholar 

  2. F. Xue, Z. Liu, Y. Su, and K. Varahramyan, Micro-electron. Eng. 83, 298 (2006).

    Article  Google Scholar 

  3. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Mater. Sci. Mater. Electron. 29, 11699 (2018). https://doi.org/10.1007/s10854-018-9268-9.

    Article  Google Scholar 

  4. H.N. Abdelhamid and H.-F. Wu, Mater. Sci. Eng. C 45, 438 (2014).

    Article  Google Scholar 

  5. H.N. Abdelhamid, Mater. Sci. Forum 832, 28 (2015).

    Article  Google Scholar 

  6. H.N. Abdelhamid, S. Kumaran, and H.-F. Wu, RSC Adv. 6, 97629 (2016).

    Article  Google Scholar 

  7. L. Shastri, H.N. Abdelhamid, M. Nawaz, and H.-F. Wu, RSC Adv. 5, 41595 (2015).

    Article  Google Scholar 

  8. Z. Deng, G. Meng, X. Fang, W. Dong, J. Shao, S. Wang, and B. Tong, J. Alloys Compd. 777, 52 (2019).

    Article  Google Scholar 

  9. L. Yin, Y. Shi, L. Lu, R. Fang, X. Wan, and H. Shi, Catalysts 6, 69 (2016). https://doi.org/10.3390/catal6050069.

    Article  Google Scholar 

  10. K. Kolwas and A. Derkachova, Opto-Electron. Rev. 18, 421 (2010).

    Article  Google Scholar 

  11. S. Efrima and B.V. Bronk, J. Phys. Chem. B 102, 5947 (1998).

    Article  Google Scholar 

  12. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  13. Y. Lu and K. Chou, J. Chin. Inst. Chem. Eng, 39, 673 (2008). https://doi.org/10.1016/j.jcice.2008.06.005.

    Article  Google Scholar 

  14. S. Yeo, H. Lee, and S. Jeong, J. Mater. Sci. 38, 2143 (2003).

    Article  Google Scholar 

  15. C. Chen and C. Chiang, Mater. Lett. 62, 3607 (2008).

    Article  Google Scholar 

  16. H. Soliman, A. Elsayed, and A. Dyaa, Egypt. J. Basic Appl. Sci. 5, 228 (2018).

    Article  Google Scholar 

  17. H.N. Abdelhamid, A. Talib, and H.F. Wu, RSC Adv. 5, 34594 (2015). https://doi.org/10.1039/C4RA14461A.

    Article  Google Scholar 

  18. A.W. Bauer, W.M. Kirby, C. Sherris, and M. Turck, Am. J. Clin. Pathol. 45, 493 (1966).

    Article  Google Scholar 

  19. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08207-7.

    Article  Google Scholar 

  20. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Alloys Compd. 726, 1106 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087.

    Article  Google Scholar 

  21. A.A. El-Bassuony, J. Mater. Sci. Mater. Electron. 28, 14489 (2017). https://doi.org/10.1007/s10854-017-7312-9.

    Article  Google Scholar 

  22. A.A. El-Bassuony, J. Supercond. Novel Magn. 31, 2829 (2018). https://doi.org/10.1007/s10948-017-4543-1.

    Article  Google Scholar 

  23. H.K. Abdelsalam, J. Supercond. Novel Magn. (2018). https://doi.org/10.1007/s10948-018-4689-5.

    Article  Google Scholar 

  24. M.H. Maklad, N.M. Shash, and H.K. Abdelsalam, Int. J. Mod. Phys. B 28, 1450165 (2014). https://doi.org/10.1142/S0217979214501653.

    Article  Google Scholar 

  25. K. Jyoti, M. Baunthiyal, and A. Singh, J. Radiat. Res. Appl. Sci. 9, 217 (2016). https://doi.org/10.1016/j.jrras.2015.10.002.

    Article  Google Scholar 

  26. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Supercond. Novel Magn. 31, 1539 (2018). https://doi.org/10.1007/s10948-017-4340-x.

    Article  Google Scholar 

  27. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Supercond. Novel Magn. 31, 3691 (2018). https://doi.org/10.1007/s10948-018-4627-6.

    Article  Google Scholar 

  28. B. Aslibeiki, Curr. Appl. Phys. 14, 1659 (2014). https://doi.org/10.1016/j.cap.2014.09.025.

    Article  Google Scholar 

  29. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, and K.W. Eliceiri, BMC Bioinform. 18, 529 (2017). https://doi.org/10.1186/s12859-017-1934-z.

    Article  Google Scholar 

  30. Y.L.N. Murthy, T.K. Rao, I.V.K. Viswanath, and R. Singh, J. Magn. Magn. Mater. 322, 2071 (2010). https://doi.org/10.1016/j.jmmm.2010.01.036.

    Article  Google Scholar 

  31. M. Faried, K. Shameli, M. Miyake, A. Hajalilou, A. Zamanian, Z. Zakaria, E. Abouzari-lotf, H. Hara, N.B.B.A. Khairudin, and M.F.B. Nordin, J. Nanomater. 2016, 4941231. https://doi.org/10.1155/2016/4941231

    Article  Google Scholar 

  32. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, and B.H. Koo, J. Korean Phys. Soc. 62, 1479 (2013). https://doi.org/10.3938/jkps.62.1479.

    Article  Google Scholar 

  33. A.A.H. El-Bassuony, J. Mater. Sci. Mater. Electron. 29, 3259 (2018). https://doi.org/10.1007/s10854-017-8261-z.

    Article  Google Scholar 

  34. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Goering, B. Baretzky, and P.B. Straumal, JETP Lett. 97, 367 (2013). https://doi.org/10.1134/s0021364013060143.

    Article  Google Scholar 

  35. M.S. Haque, M.F. Rahman, M.M. Zaman, M.A. Matin, A.K.M.A. Hakim, and M.F. Islam, Appl. Mech. Mater. 860, 87 (2016).

    Article  Google Scholar 

  36. A.I. Sherle, Y.A. Koksharov, and V.K. Imshennik, Polym. Sci. Ser. A 53, 116 (2011). https://doi.org/10.1134/S0965545X1102009X.

    Article  Google Scholar 

  37. M.H. Maklad, N.M. Shash, and H.K. Abdelsalam, Eur. Phys. J. Appl. Phys. 66, 30402 (2014). https://doi.org/10.1051/epjap/2014130573.

    Article  Google Scholar 

  38. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Mater. Sci. Mater. Electron. 29, 5401 (2018). https://doi.org/10.1007/s10854-017-8506-x.

    Article  Google Scholar 

  39. A.A.H. El-Bassuony and H.K. Abdelsalam, JOM 71, 1866 (2019). https://doi.org/10.1007/s11837-019-03415-w.

    Article  Google Scholar 

  40. A.A.H. El-Bassuony, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01306-w.

    Article  Google Scholar 

  41. G. Nangmenyi, X. Li, S. Mehrabi, and E. Mintz, J. Econ. Mater. Lett. 65, 1191 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa A. H. El-Bassuony.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H. Effect of Al Addition on Structural, Magnetic, and Antimicrobial Properties of Ag Nanoparticles for Biomedical Applications. JOM 72, 1154–1162 (2020). https://doi.org/10.1007/s11837-019-03784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03784-2

Navigation