Skip to main content

Advertisement

Log in

Element Distribution in Oxygen-Enriched Bottom-Blown Smelting of High-Arsenic Copper Dross

  • Sustainable Pyrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An oxygen-enriched bottom-blown smelting process has been proposed to extract valuable metals and remove arsenic from high-arsenic copper dross. PbO, PbS, Cu2S, and Cu5As2 were the main components of the copper dross. Iron scrap, calcium carbonate, coke, and silica were added as flux in the smelting process. Mineralogical analysis revealed that the smelting products were ferrous calcium silicate slag, lead copper matte (PbS and Cu2S), speiss (Cu3As), crude lead (Pb), and dust. Approximately 35% of copper distributed to lead copper matte, while 56% of copper and 75% of arsenic reported to speiss. The Cu concentrated in economical products for further extraction reached 91%, 87% of Pb was directly recovered to crude lead, and the As removed to dust was 4–6%. The technology was first developed and applied in industry by Henan Yuguang Gold and Lead Group Co., LTD, providing an efficient approach and production experience for copper dross recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Rehren, L. Boscher, and E. Pernicka, J. Archaeol. Sci. 39, 1717 (2012).

    Article  Google Scholar 

  2. G. Plascencia-Barrera, A. Romero-Serrano, R.D. Morales, M. Hallen-Lopez, and F. Chavez-Alcala, Can. Metall. Q. 40, 309 (2001).

    Article  Google Scholar 

  3. J.N. Greenwood, Metall. Rev. 6, 279 (1961).

    Google Scholar 

  4. D. Filippou, P. St-Germain, and T. Grammatikopoulos, Min. Proc. Ext. Met. Rev. 28, 247 (2007).

    Article  Google Scholar 

  5. C. Bates and C. Dimartini, JOM 38, 43 (1986).

    Article  Google Scholar 

  6. K.A. Chouzadjian, S.J. Roden, G.J. Davis, and J.M. Laven, Hydrometallurgy 26, 347 (1991).

    Article  Google Scholar 

  7. J.S. Jacobi, JOM 32, 10 (1980).

    Article  Google Scholar 

  8. T. Shibasaki and N. Hasegawa, Hydrometallurgy 30, 45 (1992).

    Article  Google Scholar 

  9. H.Q. Chen, Nonferrous Metals 3, 6 (2007).

    Google Scholar 

  10. C.J. Bao, Z.H. Jia, W.U. Hong-Lin, Z.Y. Ren, X. Wei, and W.U. Zhang-Yong, China Nonferrous Metall. 3, 27 (2009).

    Google Scholar 

  11. S.W.K. Morgan and D.A. Greenwood, JOM 20, 31 (1968).

    Article  Google Scholar 

  12. Q. Wang, X. Guo, and Q. Tian, Trans. Nonferrous Metal. Soc. China 27, 946 (2017).

    Article  Google Scholar 

  13. P. Coursol, P.J. Mackey, J.P.T. Kapusta, and N.C. Valencia, JOM 67, 1066 (2015).

    Article  Google Scholar 

  14. W. Li, J. Zhan, Y. Fan, C. Wei, C. Zhang, and J.Y. Hwang, JOM 69, 784 (2017).

    Article  Google Scholar 

  15. Q. Wang, X. Guo, Q. Tian, T. Jiang, M. Chen, and B. Zhao, Metals 7, 431 (2017).

    Article  Google Scholar 

  16. Q. Wang, X. Guo, Q. Tian, T. Jiang, M. Chen, and B. Zhao, Metals 7, 502 (2017).

    Article  Google Scholar 

  17. Q. Wang, X. Guo, Q. Tian, M. Chen, and B. Zhao, Metals 7, 302 (2017).

    Article  Google Scholar 

  18. M. Hino and J.M. Toguri, Metall. Trans. B 17, 755 (1986).

    Article  Google Scholar 

  19. T. Yang, X. Hui, C. Lin, C. Wei, W. Liu, and D. Zhang, JOM 70, 1 (2018).

    Google Scholar 

  20. A. Anindya, D.R. Swinbourne, M.A. Reuter, and R.W. Matusewicz, Trans. Inst. Min. Metall. C 122, 165 (2013).

    Google Scholar 

  21. J.D. Gilchrist, Extraction Metallurgy, 3rd ed. (London: Pergamon, 1989), pp. 198–212.

    Google Scholar 

  22. C. Mao, Z. Cui, and B. Zhao, in 6th International Symposium on High-Temperature Metallurgical Processing, ed. T. Jiang, J. Y. Hwang, G. R. F. Alvear F., O. Yücel, X. Mao, H. Y. Sohn, N. Ma, P. J. Mackey, and T. P. Battle (The Minerals, Metals & Materials Society, Orlando, 2015), pp. 257–264

  23. S. Jahanshahi and S. Sun, “Some aspects of calcium ferrite slags” (Researchgate, 2015), https://www.researchgate.net/publication/281297309_Some_aspects_of_calcium_ferrite_slags. Accessed 03 Sept 2015

  24. C. Chen, Z. Ling, and S. Jahanshahi, Metal. Mater. Trans. B 41, 1175 (2010).

    Article  Google Scholar 

  25. H.S. Park, S.P. Su, and I. Sohn, Metal. Mater. Trans. B 42, 692 (2011).

    Article  Google Scholar 

  26. L. Klemettinen, K. Avarmaa, and P. Taskinen, J. Sustain. Metall. 3, 772 (2017).

    Article  Google Scholar 

  27. D. Shishin and E. Jak, Calphad 60, 134 (2018).

    Article  Google Scholar 

  28. H. Rannikko, S. Sundström, and P. Taskinen, Thermochim. Acta 216, 1 (1993).

    Article  Google Scholar 

  29. I. Jimbo, S. Goto, and O. Ogawa, Metall. Trans. B 15, 535 (1984).

    Article  Google Scholar 

  30. J. Wypartowicz, J. Alloys Compd. 227, 86 (1995).

    Article  Google Scholar 

  31. A. Yazawa, JOM 49, 48 (1997).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Contract No. 51620105013), Fundamental Research Funds of Central South University (No. 2017zzts124), and Hunan Natural Science Fund for Distinguished Young Scholar (No. 2019JJ20031). We also thank Henan Yuguang Gold and Lead Group Co., LTD for providing the raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Tian, M., Wang, S. et al. Element Distribution in Oxygen-Enriched Bottom-Blown Smelting of High-Arsenic Copper Dross. JOM 71, 3941–3948 (2019). https://doi.org/10.1007/s11837-019-03767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03767-3

Navigation