Skip to main content

Advertisement

Log in

He Bubble Concentration, Size and Strain in Implanted Aluminum by SAXS/WAXS

  • Advanced Characterization and Testing of Irradiated Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Alpha-radiation damage in metals is a concern for long-term radioactive storage and systems that produce nuclear energy. Accurate prediction of irradiated material properties and failure mechanisms depends on a fundamental understanding of the size and relative percentage of helium (He) bubbles. X-ray scattering experiments are a valuable tool to resolve the nanobubble morphology (of ~ 1011 bubbles) and crystallographic strain as a function of He implantation energy and concentration in aluminum (Al) foils. A proportional change in bubble volume fraction is observed with He concentration within the same sample, while only a slight increase in the mean bubble size is observed. Estimates of the He fraction in the bubble phase with sizes ~ 4 nm, along with the overall crystallographic strain, suggest a proportion of the total implanted He exists as small bubbles (~ 1 nm) and possibly as defects in the crystal lattice. However, the fraction of He in 4-nm nanobubbles increases significantly when the He energy is above the Coulomb barrier of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.-H. Li, J.-T. Li, and W.-Z. Han, Materials 12, 1 (2019).

    Google Scholar 

  2. S.J. Zinkle and Y. Matsukawa, J. Nucl. Mater. 329–333, 88 (2004).

    Article  Google Scholar 

  3. O. Glatter and O. Kratky, Small Angle X-Ray Scattering (New York: Academic Press, 1982).

    Google Scholar 

  4. J.R. Jeffries, J.A. Hammons, T.M. Willey, M.A. Wall, D. Ruddle, J. Ilavsky, P.G. Allen, and T. van Buuren, J. Nucl. Mater. 498, 505 (2018).

    Article  Google Scholar 

  5. F. Zhang, X. Wang, J.B. Wierschke, and L. Wang, Scr. Mater. 109, 28 (2015).

    Article  Google Scholar 

  6. S.R. Soria, A. Tolley, and E.A. Sánchez, J. Nucl. Mater. 467, 357 (2015).

    Article  Google Scholar 

  7. M.D. Ong, N. Yang, R.J. Depuit, B.R. McWatters, and R.A. Causey, MRS Proc. 1264, 1264 (2010).

    Article  Google Scholar 

  8. B. Glam, S. Eliezer, D. Moreno, L. Perelmutter, M. Sudai, and D. Eliezer, Int. J. Fract. 163, 217 (2010).

    Article  Google Scholar 

  9. R.C. Birtcher, S.E. Donnelly, and C. Templier, Phys. Rev. B 50, 764 (1994).

    Article  Google Scholar 

  10. S.E. Donnelly, J.C. Rife, J.M. Gilles, and A.A. Lucas, IEEE Trans. Nucl. Sci. 28, 1820 (1981).

    Article  Google Scholar 

  11. S.E. Donnelly, J.C. Rife, J.M. Gilles, and A.A. Lucas, J. Nucl. Mater. 93–4, 767 (1980).

    Article  Google Scholar 

  12. S.-H. Li, J. Zhang, and W.-Z. Han, Scr. Mater. 165, 112 (2019).

    Article  Google Scholar 

  13. K. Morishita, R. Sugano, and B.D. Wirth, J. Nucl. Mater. 323, 243 (2003).

    Article  Google Scholar 

  14. W.G. Wolfer, Philos. Mag. A 59, 87 (1989).

    Article  Google Scholar 

  15. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010).

    Article  Google Scholar 

  16. M.J. Norgett, M.T. Robinson, and I.M. Torrens, Nucl. Eng. Des. 33, 50 (1975).

    Article  Google Scholar 

  17. J. Ilavsky, F. Zhang, A.J. Allen, L.E. Levine, P.R. Jemian, and G.G. Long, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44A, 68 (2013).

    Article  Google Scholar 

  18. J. Ilavsky, J. Appl. Crystallogr. 45, 324 (2012).

    Article  Google Scholar 

  19. J. Ilavsky and P.R. Jemian, J. Appl. Crystallogr. 42, 347 (2009).

    Article  Google Scholar 

  20. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (New York: Wiley, 1955), p. 1.

    Google Scholar 

  21. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  Google Scholar 

  22. B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010).

    Article  Google Scholar 

  23. G. Beaucage, H.K. Kammler, and S.E. Pratsinis, J. Appl. Crystallogr. 37, 523 (2004).

    Article  Google Scholar 

  24. S.E. Donnelly, Radiat. Effects 90, 1 (1985).

    Article  Google Scholar 

  25. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).

    Article  Google Scholar 

  26. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  27. J. Robertson, Acta Crystallogr. Sect. A 35, 350 (1979).

    Google Scholar 

  28. M.F. Ashby, Philos. Mag. 21, 399 (1970).

    Article  Google Scholar 

  29. T. Suzuki, K. Arai, M. Shiga, and Y. Nakamura, Metall. Trans. A 16, 27 (1985).

    Article  Google Scholar 

  30. R.D. Doherty, Scr. Metall. 19, 927 (1985).

    Article  Google Scholar 

  31. J.J. Sidor, R.H. Petrov, and L.A.I. Kestens, Acta Mater. 59, 5735 (2011).

    Article  Google Scholar 

  32. W. Blum, Phys. Status Solidi (b) 45, 561 (1971).

    Article  Google Scholar 

  33. V. Thaveeprungsriporn and G.S. Was, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 28, 2101 (1997).

    Article  Google Scholar 

  34. J.B. Nelson and D.P. Riley, Proc. Phys. Soc. 57, 160 (1945).

    Article  Google Scholar 

  35. D. Schwahn, H. Ullmaier, J. Schelten, and W. Kesternich, Acta Metall. 31, 2003 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This research also used resources of the Advanced Photon Source (APS Sector 9-ID-C), a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work.

Corresponding author

Correspondence to Joshua A. Hammons.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammons, J.A., Tumey, S.J., Idell, Y. et al. He Bubble Concentration, Size and Strain in Implanted Aluminum by SAXS/WAXS. JOM 72, 176–186 (2020). https://doi.org/10.1007/s11837-019-03763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03763-7

Navigation