Skip to main content
Log in

CFD-PBM Simulation and PIV Measurement of Liquid–Liquid Flow in a Continuous Stirring Settler

  • Extraction and Recycling of Battery Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mixer settler is widely employed in the extraction and recycling of battery materials. The improvement of the separation efficiency is one of the most important issues. In order to investigate the effect of agitating speed on the flow characteristics and settling performance, both computational fluid dynamics coupled population balance model simulations and experiments with particle image velocimetry measurement have been performed in this work to investigate the flow field at different agitating speeds. The predicted data were in good agreement with the experimental data. The results demonstrated that an appropriate agitating speed could effectively promote the collision efficiency of organic phase droplets and accelerate the separation process. When the agitating speed was too large, the shear stress of the fluid would promote the breakage of the organic phase droplets and decrease the separation efficiency. This work will contribute to optimizing and designing large-scale stirring settlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Tanong, L.H. Tran, G. Mercier, and J.F. Blais, J. Clean. Prod. 148, 233 (2017).

    Article  Google Scholar 

  2. S. Dhiman and B. Gupta, J. Clean. Prod. 225, 820 (2019).

    Article  Google Scholar 

  3. Y.J. Shih, S.K. Chien, S.R. Jhang, and Y.C. Lin, J. Taiwan Inst. Chem. E 100, 151 (2019).

    Article  Google Scholar 

  4. R. Torkaman, M. Asadollahzadeh, M. Torab-Mostaedi, and M.G. Maragheh, Sep. Purif. Technol. 186, 318 (2017).

    Article  Google Scholar 

  5. S.S. Ye, Q. Tang, Y.D. Wang, and W.Y. Fei, Int. J. Heat Fluid. Fl 62, 568 (2016).

    Article  Google Scholar 

  6. S.K. Panda, K.K. Singh, K.T. Shenoy, and V.V. Buwa, Chem. Eng. J. 310, 120 (2017).

    Article  Google Scholar 

  7. S.K. Panda and V.V. Buwa, Ind. Eng. Chem. Res. 56, 13929 (2017).

    Article  Google Scholar 

  8. X.H. Guo, Q.Y. Zhao, T.A. Zhang, Z.M. Zhang, and Z. Zhu, JOM 71, 1650 (2019).

    Article  Google Scholar 

  9. G.L. Lane, K. Mohanarangam, W. Yang, D.J. Robinson, and K.R. Barnard, Chem. Eng. Res. Des. 109, 200 (2016).

    Article  Google Scholar 

  10. L. Huang, S.S. Deng, M. Chen, and J.F. Guan, Chem. Eng. Sci. 172, 107 (2017).

    Article  Google Scholar 

  11. N.N. Liu, W. Wang, Y. Wang, Z. Wang, J.C. Han, J. Gong, and C.C. Wu, Appl. Therm. Eng. 125, 1209 (2017).

    Article  Google Scholar 

  12. W. Wang, W. Cheng, J.M. Duan, J. Gong, B. Hu, and P. Angeli, Chem. Eng. Sci. 105, 22 (2014).

    Article  Google Scholar 

  13. X.L. Cai, J.Q. Chen, M.L. Liu, Y.P. Ji, G.D. Ding, and L. Zhang, J. Disper. Sci. Technol. 38, 1435 (2016).

    Article  Google Scholar 

  14. X.L. Cai, J.Q. Chen, M.L. Liu, Y.P. Ji, and S. An, Sep. Purif. Technol. 176, 134 (2017).

    Article  Google Scholar 

  15. S. Castellano, N.S. Othman, D. Marchisio, A. Buffo, and S. Charton, Chem. Eng. J. 354, 1197 (2018).

    Article  Google Scholar 

  16. A. Misra, L.G.M.D. Souza, M. Illner, L. Hohl, M. Kraume, J.U. Repke, and D. Thévenin, Chem. Eng. Sci. 167, 242 (2017).

    Article  Google Scholar 

  17. L. Qi, X.H. Meng, R. Zhang, H.Y. Liu, C.M. Xu, Z.C. Liu, and P.A.A. Klusener, Chem. Eng. J. 268, 116 (2015).

    Article  Google Scholar 

  18. L. Xie, Q. Liu, and Z.H. Luo, Chem. Eng. Res. Des. 130, 1 (2018).

    Article  Google Scholar 

  19. C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, T.A. Zhang, and Y. Liu, China Pet. Process. Pe. 17, 121 (2015).

    Google Scholar 

  20. C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, L. Yan, and T.A. Zhang, Chin. J. Rare Metals 39, 540 (2015).

    Google Scholar 

  21. S.C. Wang, T.A. Zhang, Z.M. Zhang, C. Lv, Q.Y. Zhao, and Y. Liu, China Pet. Process. Pe. 16, 99 (2014).

    Google Scholar 

  22. D.Y. Li, Z.M. Gao, A. Buffo, W. Podgorska, and D.L. Marchisio, AIChE J. 63, 2293 (2017).

    Article  Google Scholar 

  23. C. Tsouris and L.L. Tavlarides, AIChE J. 40, 395 (1994).

    Article  Google Scholar 

  24. S.A. Morsi and A.J. Alexander, J. Fluid Mech. 55, 193 (1972).

    Article  Google Scholar 

  25. P.G. Saffman and J.S. Turner, J. Fluid Mech. 1, 16 (1956).

    Article  Google Scholar 

  26. H. Luo and H.F. Svendsen, Chem. Eng. Commun. 145, 145 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National 863 Plan (2010AA03A405), National Key R&D Program of China (2017yfc0210403-04), National Key R&D Program of China (2017YFC0210404) and the Excellent Talents Cultivation Project of Liaoning Province (2015020591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Xh., Zhang, Ta., Zhao, Qy. et al. CFD-PBM Simulation and PIV Measurement of Liquid–Liquid Flow in a Continuous Stirring Settler. JOM 71, 4500–4508 (2019). https://doi.org/10.1007/s11837-019-03746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03746-8

Navigation