Skip to main content
Log in

Liquid–Liquid Flow in a Continuous Stirring Settler: CFD-PBM Simulation and Experimental Verification

  • Computational Approaches for Energy Materials and Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mixer-settlers have been widely employed in the rare earth element separation industry. Presently, reducing the loss of reagents and occupied areas and achieving a highly efficient separation in the settler are challenging issues. In this work, we report numerical simulations of the liquid–liquid flow in a stirring settler and thereafter describe the experimental validation. A computational fluid dynamics coupled population balance model (CFD-PBM) was developed to investigate the liquid–liquid flow characteristics and settling performance. The dispersion band thickness predicted by the turbulent aggregation model was in good agreement with the experimental measurements. The effects of the total liquid flow rate and initial average droplet diameter on the settling characteristics were further investigated. It was found that the dispersion band thickness increased significantly as the droplet diameter decreased. Moreover, this research shows that the CFD-PBM coupled model is promising for designing large-scale stirring settlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Chen, J. Ma, and H.T. Liu, Int. J. Therm. Sci. 132, 335 (2018).

    Article  Google Scholar 

  2. J. Ma, Y.S. Sun, and B.W. Li, Int. J. Heat Mass Transf. 114, 469 (2017).

    Article  Google Scholar 

  3. M. Mohammadi, K. Forsberg, L.S. Kloo, J.M.D.L. Cruz, and A. Rasmuson, Hydrometallurgy 156, 215 (2015).

    Article  Google Scholar 

  4. Y. Liu, H.S. Jeon, and S.L. Man, Met. Mater. Int. 21, 944 (2015).

    Article  Google Scholar 

  5. J.E. Quinn, K.H. Soldenhoff, and G.W. Stevens, Hydrometallurgy 169, 621 (2017).

    Article  Google Scholar 

  6. H.W. Liu and L.H. Zhang, Chin. Rare Earths 21, 58 (2000).

    Google Scholar 

  7. Y. Ban, S. Hotoku, Y. Tsubata, and Y. Morita, Solv. Extr. Ion Exch. 32, 348 (2014).

    Article  Google Scholar 

  8. G.M. Madhu, S.M. Kumar, and M.A.L.A. Raj, J. Dispers. Sci. Technol. 28, 1123 (2007).

    Article  Google Scholar 

  9. M.C. Ruiz and R. Padilla, Hydrometallurgy 80, 32 (2005).

    Article  Google Scholar 

  10. G.Z. Yu and Z.S. Mao, Chem. Eng. Technol. 27, 407 (2004).

    Article  Google Scholar 

  11. S. Javanshir, M. Abdollahy, and H. Abolghasemi, Chem. Eng. Res. Des. 90, 1680 (2012).

    Article  Google Scholar 

  12. M. Shabani and A. Mazahery, Arch. Metall. Mater. 57, 173 (2012).

    Article  Google Scholar 

  13. M.O. Shabani, M. Alizadeh, and A. Mazahery, Eng. Comput. Germany 27, 373 (2011).

    Article  Google Scholar 

  14. K. Mohanarangam, W. Yang, K.R. Barnard, N.J. Kelly, and D.J. Robinson, Chem. Eng. Sci. 104, 925 (2013).

    Article  Google Scholar 

  15. G.L. Lane, K. Mohanarangam, W. Yang, D.J. Robinson, and K.R. Barnard, Chem. Eng. Res. Des. 109, 200 (2016).

    Article  Google Scholar 

  16. S.S. Ye, Q. Tang, Y.D. Wang, and W.Y. Fei, Int. J. Heat Fluid Flow 62, 568 (2016).

    Article  Google Scholar 

  17. S.K. Panda, K.K. Singh, K.T. Shenoy, and V.V. Buwa, Chem. Eng. J. 310, 120 (2017).

    Article  Google Scholar 

  18. T.A. Zhang, Y. Liu, Q.Y. Zhao, G.Z. Lv, Z.H. Dou, L.P. Niu, X.L. Jiang, and J.C. He, CN Patent CN102861457A (2013).

  19. C. Lv, Z.M. Zhang, Q.Y. Zhao, and T.A. Zhang, J. Northeast. Univ. 35, 1570 (2014).

    Google Scholar 

  20. C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, T.A. Zhang, and Y. Liu, China Pet. Process. Petrochem. Technol. 17, 121 (2015).

    Google Scholar 

  21. C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, L. Yan, and T.A. Zhang, Chin. J. Rare Metals 39, 540 (2015).

    Google Scholar 

  22. S.C. Wang, T.A. Zhang, Z.M. Zhang, C. Lv, Q.Y. Zhao, and Y. Liu, China Pet. Process. Petrochem. Technol. 16, 99 (2014).

    Google Scholar 

  23. S.A. Morsi and A.J. Alexander, J. Fluid Mech. 55, 193 (1972).

    Article  Google Scholar 

  24. H. Luo and H.F. Svendsen, AIChE J. 42, 1225 (1996).

    Article  Google Scholar 

  25. H. Luo and H.F. Svendsen, Chem. Eng. Commun. 145, 145 (1996).

    Article  Google Scholar 

  26. P.G. Saffman and J.S. Turner, J. Fluid Mech. 1, 16 (1956).

    Article  Google Scholar 

  27. D.Y. Li, Z.M. Gao, A. Buffo, W. Podgorska, and D.L. Marchisio, AIChE J. 63, 2293 (2017).

    Article  Google Scholar 

  28. C. Tsouris and L.L. Tavlarides, AIChE J. 40, 395 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National 863 Plan (2010AA03A405) and the Excellent Talents Cultivation Project of Liaoning Province (2015020591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Xh., Zhao, Qy., Zhang, Ta. et al. Liquid–Liquid Flow in a Continuous Stirring Settler: CFD-PBM Simulation and Experimental Verification. JOM 71, 1650–1659 (2019). https://doi.org/10.1007/s11837-019-03396-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03396-w

Navigation