Skip to main content
Log in

Dislocation Density-Based Multiscale Modeling of Deformation and Subgrain Texture in Polycrystals

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, a viscoplastic fast Fourier transform (FFT)-based code is combined with a continuum dislocation dynamics (CDD) framework to analyze the mechanical behavior of polycrystalline MgAZ31 material under unidirectional tensile test. A crystal plasticity formulation including the size effects through a stress/strain gradient theory, dislocation density flux among neighboring grains and grain boundary back stress field is implemented into the CDD and coupled with VPFFT for this purpose. Then, an electron backscatter diffraction-based orientation image microscopy of a sample microstructure is applied as an input to the code. The model predicts, among other things, distributions of stress, strain, mobile dislocation density, geometrically necessary dislocation and stress–strain behavior. The numerical findings are compared with experimental results, and the micromechanical behavior of the polycrystal is discussed regarding dislocation density evaluation in different stages of strain hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Hamid, H. Lyu, and H. Zbib, Philos Mag 98, 2896 (2018).

    Article  Google Scholar 

  2. C. Paramatmuni and A.K. Kanjarla, Int. J. Plast 113, 269 (2019).

    Article  Google Scholar 

  3. M. Arul Kumar, I.J. Beyerlein, and C.N. Tomé, Acta Mater. 116, 143 (2016).

    Article  Google Scholar 

  4. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé, Int. J. Plast 49, 36 (2013).

    Article  Google Scholar 

  5. S. Das, F. Hofmann, and E. Tarleton, Int. J. Plast 109, 18 (2018).

    Article  Google Scholar 

  6. A.H. Kobaissy, G. Ayoub, L.S. Toth, S. Mustapha, and M. Shehadeh, Int. J. Plast 114, 252 (2018).

    Article  Google Scholar 

  7. H. Wang, B. Clausen, C.N. Tomé, and P.D. Wu, Acta Mater. 61, 1179 (2012).

    Article  Google Scholar 

  8. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, and M. Knezevic, Int. J. Plast 83, 90 (2016).

    Article  Google Scholar 

  9. M. Ardeljan and M. Knezevic, Acta Mater. 157, 339 (2018).

    Article  Google Scholar 

  10. M. Ardeljan, I.J. Beyerlein, and M. Knezevic, Int. J. Plast 99, 81 (2017).

    Article  Google Scholar 

  11. M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Int. J. Plast 109, 193 (2018).

    Article  Google Scholar 

  12. M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Acta Mater. 164, 530 (2019).

    Article  Google Scholar 

  13. A. Eghtesad, M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Comput. Mech. 61, 89 (2018).

    Article  MathSciNet  Google Scholar 

  14. R.A. Lebensohn, R. Brenner, O. Castelnau, and A.D. Rollett, Acta Mater. 56, 3914 (2008).

    Article  Google Scholar 

  15. R.A. Lebensohn, E.M. Bringa, and A. Caro, Acta Mater. 55, 261 (2007).

    Article  Google Scholar 

  16. R.A. Lebensohn and A. Needleman, J. Mech. Phys. Solids 97, 333 (2016).

    Article  MathSciNet  Google Scholar 

  17. R.A. Lebensohn, Acta Mater. 49, 2723 (2001).

    Article  Google Scholar 

  18. J.C. Michel, H. Moulinec, and P. Suquet, Int. J. Numer. Meth. Eng. 52, 159 (2001).

    Article  Google Scholar 

  19. H. Askari, J. Young, D. Field, G. Kridli, D.S. Li, and H. Zbib, Philos Mag 94, 381 (2014).

    Article  Google Scholar 

  20. H. Moulinec and P. Suquet, Comput Method Appl M 157, 69 (1998).

    Article  Google Scholar 

  21. J.E. Bailey and P.B. Hirsch, Philos Mag 5, 485 (1960).

    Article  Google Scholar 

  22. E. Orowan, Proceedings of the Physical Society 52, 8 (1940).

    Article  Google Scholar 

  23. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma, Acta Mater. 52, 1859 (2004).

    Article  Google Scholar 

  24. N. Taheri-Nassaj and H.M. Zbib, Int. J. Plast 74, 1 (2015).

    Article  Google Scholar 

  25. H. Lyu, A. Ruimi, and H.M. Zbib, Int. J. Plast 72, 44 (2015).

    Article  Google Scholar 

  26. S. Queyreau, G. Monnet, and B. Devincre, Int. J. Plast 25, 361 (2009).

    Article  Google Scholar 

  27. D. Terentyev, D. Bacon, and Y.N. Osetsky, J. Phys.: Condens. Matter 20, 445007 (2008).

    Google Scholar 

  28. S. Akarapu and J.P. Hirth, Acta Mater. 61, 3621 (2013).

    Article  Google Scholar 

  29. M. Hamid, H. Lyu, B.J. Schuessler, P.C. Wo, and H.M. Zbib, Crystals 7, 152 (2017).

    Article  Google Scholar 

  30. D.S. Li, H. Zbib, X. Sun, and M. Khaleel, Int. J. Plast 52, 3 (2014).

    Article  Google Scholar 

  31. H.T. Zhu and H.M. Zbib, Acta Mech. 121, 165 (1997).

    Article  Google Scholar 

  32. T. Ohashi, Int. J. Plast 21, 2071 (2005).

    Article  Google Scholar 

  33. K. Shizawa and H.M. Zbib, Journal Of Engineering Materials And Technology-Transactions Of The Asme 121, 247 (1999).

    Article  Google Scholar 

  34. Z. Shen, R.H. Wagoner, and W.A.T. Clark, Acta Metall. 36, 3231 (1988).

    Article  Google Scholar 

  35. K.G. Davis, E. Teghtsoonian, and A. Lu, Acta Metall. 14, 1677 (1966).

    Article  Google Scholar 

  36. E. Werner and W. Prantl, Acta Metall. Mater. 38, 533 (1990).

    Article  Google Scholar 

  37. J.F. Nye, Acta Metall. 1, 153 (1953).

    Article  Google Scholar 

  38. M.G. Armentano and R.G. Duran, Appl Numer Math 37, 397 (2001).

    Article  MathSciNet  Google Scholar 

  39. W.K. Liu, S.F. Li, and T. Belytschko, Comput Method Appl M 143, 113 (1997).

    Article  Google Scholar 

  40. H. Lyu, M. Hamid, A. Ruimi, and H.M. Zbib, Int. J. Plast 97, 46 (2017).

    Article  Google Scholar 

  41. G.D. Sim, G. Kim, S. Lavenstein, M.H. Hamza, H.D. Fan, and J.A. El-Awady, Acta Mater. 144, 11 (2018).

    Article  Google Scholar 

  42. B. Raeisinia, S.R. Agnew, and A. Akhtar, Metallurgical and materials transactions. 42, 1418–1430 (2011).

    Article  Google Scholar 

  43. U. Ali, Numerical Modeling of Failure in Magnesium Alloys under Axial Compression and Bending for Crashworthiness Applications. Master Thesis, University of Waterloo (2012).

Download references

Acknowledgments

The support provided by the National Science Foundation’s CMMI program to WSU under Grant No. 1434879 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hamid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, M., Zbib, H.M. Dislocation Density-Based Multiscale Modeling of Deformation and Subgrain Texture in Polycrystals. JOM 71, 4136–4143 (2019). https://doi.org/10.1007/s11837-019-03744-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03744-w

Navigation