Skip to main content

Advertisement

Log in

Enhanced Cycling Performance of LiNi0.9Co0.08Al0.02O2 via Co-Rich Surface

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

High-capacity LiNi0.90Co0.08Al0.02O2 with a Co-rich surface has been synthesized by a coprecipitation technique. The results of elemental, morphology, and structure analyses suggest that Co(OH)2 was uniformly coated on the nickel-cobalt-aluminum hydroxide precursor, providing a Co-rich surface layer on the Ni-based cathode material. Electrochemical tests and pH measurements demonstrated that the Co-rich coating increased the Li storage ability of the cathode. The cathode displayed high discharge capacity of ~ 207 mAh g−1 and 194 mAh g−1 at rates of 0.2°C and 1°C, respectively, and high-capacity retention of 90.2% after 100 cycles at rate of 1°C, representing better performance than that of the reference sample. The Co surface enrichment also decreased the pH of the material and restrained the formation of high-resistance Li-based residues during air exposure, illustrating that such a Co-rich surface can improve the storage stability of LiNi0.90Co0.08Al0.02O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Li, B. Song, and A. Manthiram, Chem. Soc. Rev. 46, 3006 (2017).

    Article  Google Scholar 

  2. H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, and J. Cho, Nano Lett. 15, 2111 (2015).

    Article  Google Scholar 

  3. K. Wu, K. Du, and G. Hu, J. Mater. Chem. A 6, 1057 (2018).

    Article  Google Scholar 

  4. D.W. Jun, C.S. Yoon, U.H. Kim, and Y.-K. Sun, Chem. Mater. 29, 5048 (2017).

    Article  Google Scholar 

  5. S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, and Y.K. Sun, ACS Energy Lett. 2, 196 (2017).

    Article  Google Scholar 

  6. Y. Su, Y. Yang, L. Chen, Y. Lu, L. Bao, G. Chen, Z. Yang, Q. Zhang, J. Wang, R. Chen, S. Chen, and F. Wu, Electrochim. Acta 292, 217 (2018).

    Article  Google Scholar 

  7. J. Kim, H. Ma, H. Cha, H. Lee, J. Sung, M. Seo, P. Oh, M. Park, and J. Cho, Energy Environ. Sci. 11, 1449 (2018).

    Article  Google Scholar 

  8. X. Xiong, Z. Wang, P. Yue, H. Guo, F. Wu, J. Wang, and X. Li, J. Power Sources 222, 318 (2013).

    Article  Google Scholar 

  9. T. Ren, J. Zhang, D. Wang, P. Dong, J. Duan, X. Li, S. Rao, D. Huang, and Y. Zhang, Ceram. Int. 44, 14660 (2018).

    Article  Google Scholar 

  10. W. Liu, X. Li, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair, and X. Sun, Nano Energy 44, 111 (2018).

    Article  Google Scholar 

  11. J. Duan, G. Hu, Y. Cao, C. Tan, C. Wu, K. Du, and Z. Peng, J. Power Sources 326, 322 (2016).

    Article  Google Scholar 

  12. Y. Li, R. Xu, Y. Ren, J. Lu, H. Wu, L. Wang, D.J. Miller, Y.-K. Sun, K. Amine, and Z. Chen, Nano Energy 19, 522 (2016).

    Article  Google Scholar 

  13. J.Y. Liao, S.M. Oh, and A. Manthiram, ACS Appl. Mater. Int. 8, 24543 (2016).

    Article  Google Scholar 

  14. Z. Qiu, Y. Zhang, X. Huang, J. Duan, D. Wang, G.P. Nayaka, X. Li, and P. Dong, J. Power Sources 400, 341 (2018).

    Article  Google Scholar 

  15. J.G. Han, J.B. Lee, A. Cha, T.K. Lee, W. Cho, S. Chae, S.J. Kang, S.K. Kwak, J. Cho, S.Y. Hong, and N.S. Choi, Energy Environ. Sci. 11, 1552 (2018).

    Article  Google Scholar 

  16. J. Cao, G. Hu, Z. Peng, K. Du, and Y. Cao, J. Power Sources 281, 49 (2015).

    Article  Google Scholar 

  17. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Mater. Res. Bull. 15, 783 (1980).

    Article  Google Scholar 

  18. W. Liu, G. Hu, K. Du, Z. Peng, and Y. Cao, J. Power Sources 230, 201 (2013).

    Article  Google Scholar 

  19. M. Kang, J. Park, F. Maglia, S. Kim, K. Kim, C.S. Yoon, and Y.K. Sun, Adv. Energy Mater. 8, 1703612 (2018).

    Article  Google Scholar 

  20. G. Hu, W. Liu, Z. Peng, K. Du, and Y. Cao, J. Power Sources 198, 258 (2012).

    Article  Google Scholar 

  21. L. Zou, Z. Liu, W. Zhao, H. Jia, J. Zheng, Y. Yang, G. Wang, J.G. Zhang, and C. Wang, Chem. Mater. 30, 7016 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Nature Science Foundation of China (Grant Nos. 51602352, 51772333, 51874358 and 51904135). We thank Natasha Lundin, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Duan or Guorong Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Duan, J., Du, K. et al. Enhanced Cycling Performance of LiNi0.9Co0.08Al0.02O2 via Co-Rich Surface. JOM 72, 738–744 (2020). https://doi.org/10.1007/s11837-019-03734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03734-y

Navigation