Skip to main content
Log in

High-rate LiNi0.815Co0.15Al0.035O2 cathode material prepared by spray drying method for Li-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel-rich LiNixCoyAl1−xyO2 (x ≥ 0.5) cathode materials suffer from poor cycle stability and rate capability. Herein, based on a spray drying and a high-temperature calcination process, the LiNi0.815Co0.15Al0.035O2 (NCA) cathode material is synthesized successfully. Besides, the reasons for good rate capability of the material are analyzed in detail. The results show that the loose and porous morphology of NCA could facilitate Li+ diffusion and electron transportation. Thus, it can keep a good electrochemical performance under high current density. As a cathode material, it generates a capacity of 200 mAh g−1 at 0.1 C, good capacity retention of 94% after 100 cycles at 0.5 C and 90.6% after 150 cycles at 1 C. More impressively, it exhibits a capacity of 169 mAh g−1 at 5 C. In addition, integrating cathode NCA and anode graphite into a full cell, it generates a capacity of 185 mAh g−1 at 0.5 C with the capacity retention of 100% after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)

    Article  CAS  Google Scholar 

  2. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  3. Y. Qiao, R.M. Han, Y.D. Pang, Z.S. Lu, J. Zhao, X.G. Cheng, H.S. Zhang, Z.X. Yang, S.T. Yang, Y. Liu, 3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: structure design, experimental and computational insights. J. Mater. Chem. A 7, 11400–11407 (2019)

    Article  CAS  Google Scholar 

  4. T. Wei, R. Zeng, Y.M. Sun, Y.H. Huang, K. Huang, A reversible and stable flake-like LiCoO2 cathode for lithium ion batteries. Chem. Commun. 50, 1962–1964 (2014)

    Article  CAS  Google Scholar 

  5. R. Robert, C. Villevieille, P. Nov’ak, Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J. Mater. Chem. A 2, 8589–8598 (2014)

    Article  CAS  Google Scholar 

  6. L. Xue, Q.H. Zhang, X.H. Zhu, L. Gu, J.L. Yue, Q.Y. Xia, T. Xing, T.T. Chen, Y. Yao, H. Xia, 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy 56, 463–472 (2019)

    Article  CAS  Google Scholar 

  7. N. Kalaiselvi, P. Kalyani, Various aspects of LiNiO2 chemistry: a review. Sci. Technol. Adv. Mater. 6, 689–703 (2005)

    Article  Google Scholar 

  8. Z.P. Qiu, Y.J. Zhang, X.S. Huang, J.G. Duan, D. Wang, G. Nayaka, X. Li, P. Dong, Beneficial effect of incorporating Ni-rich oxide and layered over-lithiated oxide into high-energy-density cathode materials for lithium-ion batteries. J. Power Sour. 400, 341–349 (2018)

    Article  CAS  Google Scholar 

  9. J.G. Duan, G.R. Hu, Y.B. Cao, C.P. Tan, C. Wu, K. Du, Z.D. Peng, Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping. J. Power Sour. 326, 322–330 (2016)

    Article  CAS  Google Scholar 

  10. Y.X. Chen, Y.J. Li, W. Li, G.L. Cao, S.Y. Tang, Q.Y. Su, S.Y. Deng, J. Guo, High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements. Electrochim. Acta 281, 48–59 (2018)

    Article  CAS  Google Scholar 

  11. J.H. Lee, C.S. Yoon, J. Hwang, S. Kim, F. Maglia, P. Lamp, S. Myung, Y. Sun, High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016)

    Article  CAS  Google Scholar 

  12. F. Wu, J. Tian, Y.F. Su, J. Wang, C.Z. Zhang, L.Y. Bao, T. He, J.H. Li, S. Chen, Effect of Ni2+ content on lithium/nickel disorder for ni-rich cathode materials. ACS Appl. Mater. Interfaces. 7, 7702–7708 (2015)

    Article  CAS  Google Scholar 

  13. H.Z. Zhang, C. Liu, D.W. Song, L.Q. Zhang, L.J. Bie, A new synthesis strategy towards enhancing the structure and cycle stabilities of the LiNi0.80Co0.15Al0.05O2 cathode material. J. Mater. Chem. A 5, 835–841 (2017)

    Article  CAS  Google Scholar 

  14. P. Yue, Z.X. Wang, H.J. Guo, F.X. Wu, Z.J. He, X.H. Li, Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries. J. Solid State Electrochem. 16, 3849–3854 (2012)

    Article  CAS  Google Scholar 

  15. C.J. Han, J.H. Yoon, W.I. Cho, H. Jang, Electrochemical properties of LiNi0.8Co0.2−xAlxO2 prepared by a sol–gel method. J. Power Sour. 136, 132–138 (2004)

    Article  CAS  Google Scholar 

  16. X.X. Yan, L. Chen, S. Shah, J.J. Liang, Z.F. Liu, The effect of Co3O4 and LiCoO2 cladding layer on the high rate and storage property of high nickel material LiNi0.8Co0.15Al0.05O2 by simple one-step wet coating method. Electrochim. Acta 249, 179–188 (2017)

    Article  CAS  Google Scholar 

  17. X.L. Yang, C.G. Bao, L.L. Xie, L.M. Zhu, X.Y. Cao, Preparation of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine cathode composites with enhanced electrochemical performances towards reversible lithium storage. Ceram. Int. 45, 9726–9735 (2019)

    Article  CAS  Google Scholar 

  18. S.H. Guo, B. Yuan, H.M. Zhao, D. Hua, Y. Shen, C.C. Sun, T.M. Chen, W. Sun, J.S. Wu, B. Zheng, W.N. Zhang, S. Li, F.W. Huo, Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy 58, 673–679 (2019)

    Article  CAS  Google Scholar 

  19. Y.J. Zhang, Z.P. Qiu, P. Dong, J.G. Duan, S.B. Xia, One-step liquid-phase reaction to synthesize LiNi0.8Co0.15Al0.05O2 cathode material. J. Mater. Sci. 53, 13865–13874 (2018)

    Article  CAS  Google Scholar 

  20. Y.K. Lei, Y.H. Li, H.Y. Jiang, C.Y. Lai, Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate. J. Mater. Sci. 54, 4202–4211 (2019)

    Article  CAS  Google Scholar 

  21. J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2, 1249–1260 (2013)

    Article  CAS  Google Scholar 

  22. Z.F. Tang, R. Wu, P.F. Huang, Q.S. Wang, C.H. Chen, Improving the electrochemical performance of Ni-rich cathode material LiNi0.815Co0.15Al0.035O2 by removing the lithium residues and forming Li3PO4 coating layer. J. Alloys Compd 693, 1157–1163 (2017)

    Article  CAS  Google Scholar 

  23. Z.P. Qiu, Y.J. Zhang, P. Dong, S.B. Xia, Y. Yao, A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. Solid State Ionics 307, 73–78 (2017)

    Article  CAS  Google Scholar 

  24. Z.F. Tang, J.J. Bao, Q.X. Du, Y. Shao, M.H. Gao, B.K. Zou, C.H. Chen, Surface surgery of the nickel-rich cathode material LiNi0.815Co0.15Al0.035O2: toward a complete and ordered surface layered structure and better electrochemical properties. ACS Appl. Mater. Interfaces. 8, 34879–34887 (2016)

    Article  CAS  Google Scholar 

  25. C.L. Xu, W. Xiang, Z.G. Wu, Y.C. Li, Y.D. Xu, W. Bo, X.D. Hua, X.B. Guo, B.H.Zhong Zhang, A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode. J. Alloys Compd. 740, 428–435 (2018)

    Article  CAS  Google Scholar 

  26. Z.D. Hao, X.L. Xu, S.X. Deng, H. Wang, J.B. Liu, H. Yan, In situ growth of Co3O4 coating layer derived from MOFs on LiNi0.8Co0.15Al0.05O2 cathode materials. Ionics 25, 2469–2476 (2019)

    Article  CAS  Google Scholar 

  27. B. Zhao, J. Si, C.H. Cao, J. Zhang, B.J. Xia, J.W. Xie, B.B. Li, Y. Jiang, Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment. Solid State Ionics 339, 114998 (2019)

    Article  CAS  Google Scholar 

  28. P. Xiao, T.J. Lv, X.P. Chen, C.K. Chang, LiNi0.8Co0.15Al0.05O2: enhanced electrochemical performance from reduced cationic disordering in Li slab. Sci. Rep. 7, 1408 (2017)

    Article  Google Scholar 

  29. A.L. Hou, Y.X. Liu, L.B. Ma, T. Li, B.Z. Ren, P.F. Zhang, NH4F and carbon nanotubes co-modified LiNi0.88Co0.09Al0.03O2 Cathode material with enhanced electrochemical properties for Li-ion batteries. J. Mater. Sci. Mater. Electron. 30, 4128–4136 (2019)

    Article  CAS  Google Scholar 

  30. X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen, Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2 (PO4)3 anode material. Solid State Ionics 187, 58–63 (2011)

    Article  CAS  Google Scholar 

  31. X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Analysis of the chemical diffusion coefficient of lithium ions in Li3V2 (PO4)3 cathode material. Electrochim. Acta 55, 2384–2390 (2010)

    Article  CAS  Google Scholar 

  32. S.B. Tang, M.O. Lai, L. Lu, Study on Li+ ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques. Mater. Chem. Phys. 111, 149–153 (2008)

    Article  CAS  Google Scholar 

  33. C.C. Chen, Y.N. Huang, C.H. An, H. Zhang, Y.J. Wang, L.F. Jiao, H.T. Yuan, Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries. Chemsuschem 8, 114–122 (2015)

    Article  CAS  Google Scholar 

  34. S. Chen, T. He, Y.F. Su, Y. Lu, L.Y. Bao, L. Chen, Q.Y. Zhang, J. Wang, R.J. Chen, F. Wu, Ni-Rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 29732–29743 (2017)

    Article  CAS  Google Scholar 

  35. J.Y. Liang, X.X. Zeng, X.D. Zhang, P.F. Wang, J.Y. Ma, Y.X. Yin, X.W. Wu, Y.G. Guo, L.J. Wan, Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J. Am. Chem. Soc. 140, 6767–6770 (2018)

    Article  CAS  Google Scholar 

  36. L.J. Li, Z.Y. Chen, L.B. Song, M. Xu, H.L. Zhu, L. Gong, K.L. Zhang, Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. J. Alloys Compd 638, 77–82 (2015)

    Article  CAS  Google Scholar 

  37. A. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thalera, V. Hackere, Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 4, 3633–3642 (2014)

    Article  CAS  Google Scholar 

  38. J. Xie, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, O. Yamamoto, Orientation dependence of Li-ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering. Solid State Ionics 179, 362–370 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Science & Technology Programs of Henan Province (Nos. 182106000022 and 182102310802), Science & Technology Major Project of Zhengzhou (No. 174PZDZX570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, A., Liu, Y., Ma, L. et al. High-rate LiNi0.815Co0.15Al0.035O2 cathode material prepared by spray drying method for Li-ion batteries. J Mater Sci: Mater Electron 31, 1159–1167 (2020). https://doi.org/10.1007/s10854-019-02627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02627-9

Navigation