Skip to main content
Log in

High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys

  • New Developments in Nanomechanical Methods
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation AlxFeCrNiMn (x = 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al0.3FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  2. C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, and S. Shi, Nat. Commun. 7, 13564 (2016).

    Article  Google Scholar 

  3. Y. Guérin, G.S. Was, and S.J. Zinkle, MRS Bull. 34, 10 (2009).

    Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  5. M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Y. Champion, Acta Mater. 88, 355 (2015).

    Article  Google Scholar 

  6. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Nature 534, 227 (2016).

    Article  Google Scholar 

  7. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  8. M.A. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, and P. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  9. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  10. Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, and G.D. Samolyuk, Nat. Commun. 6, 8736 (2015).

    Article  Google Scholar 

  11. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L. Wang, F. Djurabekova, W. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).

    Article  Google Scholar 

  12. B. Kombaiah, K. Jin, H. Bei, P.D. Edmondson, and Y. Zhang, Mater. Des. 160, 1208 (2018).

    Article  Google Scholar 

  13. O. El-Atwani, N. Li, M. Li, A. Devaraj, J. Baldwin, M. Schneider, D. Sobieraj, J. Wróbel, D. Nguyen-Manh, and S. Maloy, Sci. Adv. 5, eaav2002 (2019).

    Article  Google Scholar 

  14. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).

    Article  Google Scholar 

  15. O. Senkov, J. Miller, D. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).

    Article  Google Scholar 

  16. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, J. Alloys Compd. 488, 57 (2009).

    Article  Google Scholar 

  17. N. Stepanov, D. Shaysultanov, R. Chernichenko, M. Tikhonovsky, and S. Zherebtsov, J. Alloys Compd. 770, 194 (2019).

    Article  Google Scholar 

  18. O. Senkov, S. Senkova, and C. Woodward, Acta Mater. 68, 214 (2014).

    Article  Google Scholar 

  19. F. Wang, Y. Zhang, and G. Chen, J. Alloys Compd. 478, 321 (2009).

    Article  Google Scholar 

  20. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, and Y. Wang, Sci. Rep. 6, 32146 (2016).

    Article  Google Scholar 

  21. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2016).

    Google Scholar 

  22. W. Wen, L. Capolungo, A. Patra, and C. Tomé, Metall. Mater. Trans. A 48, 2603 (2017).

    Article  Google Scholar 

  23. S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).

    Article  Google Scholar 

  24. A. Munitz, L. Meshi, and M. Kaufman, Mater. Sci. Eng. A 689, 384 (2017).

    Article  Google Scholar 

  25. E.D. Hintsala, U. Hangen, and D.D. Stauffer, JOM 70, 494 (2018).

    Article  Google Scholar 

  26. U.D. Hangen, D.D. Stauffer, and S.S. Asif, Nanomechanical Analysis of High Performance Materials, Vol. 85 (Berlin: Springer, 2014).

    Google Scholar 

  27. K. Johnson, Contact Mechanics (Cambridge: Cambridge University Press, 1985).

    Book  Google Scholar 

  28. K.P. Murphy, Machine Learning: A Probabilistic Perspective (Cambridge: MIT Press, 2012).

    MATH  Google Scholar 

  29. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, J. Mach. Learn. Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  30. N.K. Kumar, C. Li, K. Leonard, H. Bei, and S. Zinkle, Acta Mater. 113, 230 (2016).

    Article  Google Scholar 

  31. S.J. Zinkle and L.L. Snead, Annu. Rev. Mater. Res. 44, 241 (2014).

    Article  Google Scholar 

  32. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  33. W.-R. Wang, W.-L. Wang, and J.-W. Yeh, J. Alloys Compd. 589, 143 (2014).

    Article  Google Scholar 

  34. C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, and S.-K. Chen, Mater. Sci. Eng. A 528, 3581 (2011).

    Article  Google Scholar 

  35. C. Elkan. in Proceedings of the 20th International Conference on Machine Learning (ICML-03). 147.

Download references

Acknowledgements

NAM and Y. Chen gratefully acknowledge financial support from Bruker Nano Surfaces. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC, for the US Department of Energy’s NNSA, under Contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youxing Chen or Eric Hintsala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hintsala, E., Li, N. et al. High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys. JOM 71, 3368–3377 (2019). https://doi.org/10.1007/s11837-019-03714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03714-2

Navigation