Skip to main content
Log in

Phase thermal stability and mechanical properties analyses of (Cr,Fe,V)-(Ta,W) multiple-based elemental system using a compositional gradient film

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) generally possess complex component combinations and abnormal properties. The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents. The development of compositionally complex materials such as HEAs requires high-throughput experimental methods, which involves preparing many samples in a short time. Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of (Cr,Fe,V)-(Ta,W). First, we deposited the compositional gradient film by co-sputtering. Second, the mechanical properties and thermal stability of the (Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x (x = 13–82) multiple-based-elemental (MBE) alloys were investigated. After the deposited wafer was annealed at 600°C for 0.5 h, the initial amorphous phase was transformed into a body-centered cubic (bcc) structure phase when x = 33. Oxides were observed on the film surface when x was 72 and 82. Finally, the highest hardness of as-deposited films was found when x = 18, and the maximum hardness of annealed films was found when x = 33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tian and C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104(2013), p. 538.

    Article  CAS  Google Scholar 

  2. N. Selvakumar and H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Sol. Energy Mater. Sol. Cells, 98(2012), p. 1.

    Article  CAS  Google Scholar 

  3. S. Suman, M.K. Khan, and M. Pathak, Performance enhancement of solar collectors—A review, Renewable Sustainable Energy Rev., 49(2015), p. 192.

    Article  Google Scholar 

  4. M. Thirugnanasambandam, S. Iniyan, and R. Goic, A review of solar thermal technologies, Renewable Sustainable Energy Rev., 14(2010), No. 1, p. 312.

    Article  CAS  Google Scholar 

  5. D.Y. Li and Y. Zhang, The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 70(2016), p. 24.

    Article  CAS  Google Scholar 

  6. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1.

    Article  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758.

    Article  CAS  Google Scholar 

  8. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20-W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698.

    Article  CAS  Google Scholar 

  9. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84(2017), p. 153.

    Article  CAS  Google Scholar 

  10. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277.

    Article  CAS  Google Scholar 

  11. Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, and Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546.

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Liu, Y.X. Li, X. Chen, and H.W. Zhang, Micro-structure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite, Mater. Lett., 174(2016), p. 82.

    Article  CAS  Google Scholar 

  13. Z.N. An, H.L. Jia, Y.Y. Wu, P.D. Rack, A.D. Patchen, Y.Z. Liu, Y. Ren, N. Li, and P.K. Liaw, Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition, Mater. Res. Lett., 3(2015), No. 4, p. 203.

    Article  CAS  Google Scholar 

  14. X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys., 210(2018), p. 12.

    Article  CAS  Google Scholar 

  15. Y. Zou, H. Ma, and R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nature Commun., 6(2015), art. No. 7748.

  16. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater., 65(2014), p. 85.

    Article  CAS  Google Scholar 

  17. Y. Xiao, Y. Zou, H. Ma, A.S. Sologubenko, X. Maeder, R. Spolenak, and J.M. Wheeler, Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness, Scripta Mater., 168(2019), p. 51.

    Article  CAS  Google Scholar 

  18. H. Kim, S. Nam, A. Roh, M. Son, M.H. Ham, J.H. Kim, and H. Choi, Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films, Int. J. Refract. Met. Hard Mater., 80(2019), p. 286.

    Article  CAS  Google Scholar 

  19. D.Y. Li, C.X. Li, T. Feng, Y.D. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, and Y. Zhang, High-entropy Al0.3CoCrFe-Ni alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater., 123(2017), p. 285.

    Article  CAS  Google Scholar 

  20. Y. Zhang, X.H. Yan, W.B. Liao, and K. Zhao, Effects of nitrogen content on the structure and mechanical properties of (Al0.5CrFeNiTi0.25)Nx high-entropy films by reactive sputtering, Entropy, 20(2018), No. 9, art. No. 624.

  21. N. Chawake, J. Zálešák, C. Gammer, R. Franz, M.J. Cordill, J.T. Kim, and J. Eckert, Microstructural characterization of medium entropy alloy thin films, Scripta Mater., 177(2020), p. 22.

    Article  CAS  Google Scholar 

  22. W.R. Zhang, P.K. Liaw, and Y. Zhang, A novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance, Entropy, 20(2018), No. 12, art. No. 951.

  23. Q.W. Xing, J. Ma, C. Wang, and Y. Zhang, High-throughput screening solar-thermal conversion films in a pseudobinary (Cr,Fe,V)-(Ta,W) system, ACS Comb. Sci, 20(2018), No. 11, p. 602.

    Article  CAS  Google Scholar 

  24. Q.W. Xing, The Design and Property of Refractory Multiple-Basis-Element Alloy Films [Dissertation], University of Science and Technology Beijing, Beijing, 2019.

    Google Scholar 

  25. X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, and J. Sun, Size effects on the mechanical properties of nano-crystalline NbMoTaW refractory high entropy alloy thin films, Int. J. Plast., 95(2017), p. 264.

    Article  CAS  Google Scholar 

  26. J.A. Thornton, Structure-zone models of thin films, Model. Opt. Thin Films, 0821(1988), p. 95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51671020) and the Fundamental Research Funds for the Central Universities (No. FRF-MP-19-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Qw., Ma, J. & Zhang, Y. Phase thermal stability and mechanical properties analyses of (Cr,Fe,V)-(Ta,W) multiple-based elemental system using a compositional gradient film. Int J Miner Metall Mater 27, 1379–1387 (2020). https://doi.org/10.1007/s12613-020-2063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2063-7

Keywords

Navigation