Skip to main content
Log in

Characterization of Plastic Deformation in Lath Martensitic Steel by Micro-pillar Compression Focused on Sub-block and Lath Boundaries

  • Mesoscale Materials Science: Experiments and Modeling
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 28 August 2019

This article has been updated

Abstract

Ti/Ta-reduced activation ferritic/martensitic (RAFM) steel used in this study composes one class of lath martensite that has a hierarchically-arranged crystallographic structure. Due to the multi-scale complexity in the microstructure, mechanical characterization at the appropriate level is required to understand the role of each hierarchical feature. In this study, uniaxial micro-pillar compression tests combined with rigorous crystal orientation analysis were performed to figure out the specific influences of the lath and sub-block boundaries on the plasticity in the lath martensite-structured Ti/Ta-RAFM steel. By conducting a postmortem slip trace analysis and comparing the critical resolved shear stress of each activated slip system, we confirmed that there is no strengthening effect from either the lath or sub-block boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 28 August 2019

    This article was updated to include revised versions of Figures 3 and 4 that were overlooked during proof revisions.

References

  1. R.L. Klueh and A.T. Nelson, J. Nucl. Mater. 371, 37 (2007).

    Article  Google Scholar 

  2. T. Muroga, M. Gasparotto, and S.J. Zinkle, Fusion Eng. Des. 61–62, 13 (2002).

    Article  Google Scholar 

  3. E.E. Bloom, J. Nucl. Mater. 258–263, 7 (1998).

    Article  Google Scholar 

  4. A.A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, and H. Tanigawa, J. Nucl. Mater. 455, 269 (2014).

    Article  Google Scholar 

  5. B. Van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, and G. LeMarois, Fusion Eng. Des. 69, 197 (2003).

    Article  Google Scholar 

  6. G. Krauss, Mater. Sci. Eng. A 273–275, 40 (1999).

    Article  Google Scholar 

  7. T. Ohmura, T. Hara, and K. Tsuzaki, Scr. Mater. 49, 1157 (2003).

    Article  Google Scholar 

  8. S. Takaki, K.-L. Ngo-Huynh, N. Nakada, and T. Tsuchiyama, ISIJ Int. 52, 710 (2012).

    Article  Google Scholar 

  9. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, and C.C. Tasan, Acta Mater. 121, 202 (2016).

    Article  Google Scholar 

  10. Y. Mine, K. Hirashita, H. Takashima, M. Matsuda, and K. Takashima, Mater. Sci. Eng. A 560, 535 (2013).

    Article  Google Scholar 

  11. S. Morito, H. Yoshida, T. Maki, and X. Huang, Mater. Sci. Eng. A 438–440, 237 (2006).

    Article  Google Scholar 

  12. A. Shibata, T. Nagoshi, M. Sone, S. Morito, and Y. Higo, Mater. Sci. Eng. A 527, 7538 (2010).

    Article  Google Scholar 

  13. C. Du, J.P.M. Hoefnagels, R. Vaes, and M.G.D. Geers, Scr. Mater. 116, 117 (2016).

    Article  Google Scholar 

  14. H.K. Kim, J.W. Lee, J. Moon, C.H. Lee, and H.U. Hong, J. Nucl. Mater. 500, 327 (2018).

    Article  Google Scholar 

  15. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Acta Mater. 54, 1279 (2006).

    Article  Google Scholar 

  16. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, Acta Mater. 54, 5323 (2006).

    Article  Google Scholar 

  17. P.M. Kelly, A. Jostsons, and R.G. Blake, Acta Metall. Mater. 38, 1075 (1990).

    Article  Google Scholar 

  18. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, Acta Mater. 51, 1789 (2003).

    Article  Google Scholar 

  19. C.R. Krenn, D. Roundy, J.W. Morris, and M.L. Cohen, Mater. Sci. Eng. A 319–321, 111 (2001).

    Article  Google Scholar 

  20. W. Cai and W.D. Nix, Imperfections in Crystalline Solids (Cambridge: Cambridge University Press, 2016), pp. 455–487.

    Book  Google Scholar 

  21. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (NJ: Wiley, 1982), pp. 764–790.

    Google Scholar 

  22. H.M. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2, 531 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from National Research Foundation of Korea (NRF-2019M2D2A1A02038972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchan Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: to include revised version of figures 3 and 4 overlooked during the production process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Ye., Jeong, W., Lee, MG. et al. Characterization of Plastic Deformation in Lath Martensitic Steel by Micro-pillar Compression Focused on Sub-block and Lath Boundaries. JOM 71, 3536–3542 (2019). https://doi.org/10.1007/s11837-019-03710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03710-6

Navigation