Skip to main content
Log in

Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates

  • Modeling and Simulation of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recognized as a prominent material for engineering applications, carbon fiber-reinforced laminated composites require significant effort to characterize due to their anisotropic structure and viscoelastic nature. Dynamic mechanical analysis has been used to accelerate the testing process by transforming the measured viscoelastic properties to elastic modulus. To expand the transformation to anisotropic materials, artificial neural network approach is used to build the master relationship of the storage modulus in three in-plane directions. Using rotation transformation, the stiffness tensor can be calculated to extrapolate the frequency domain viscoelastic properties in any orientation with respect to the fiber direction. The viscoelastic properties are transformed to time domain relaxation function using the linear relationship of viscoelasticity. Stress response with a certain strain history is predicted and the elastic modulus is extracted. Compared to the experimental flexural test results, the artificial neural network-based method achieved an error of less than 7.3%. The results show that the transformation can predict the anisotropic material behavior at a wide range of temperatures and strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. MInus and S. Kumar, JOM 57, 52 (2005). https://doi.org/10.1007/s11837-005-0217-8.

    Article  Google Scholar 

  2. R.A. Sullivan, JOM 58, 77 (2006). https://doi.org/10.1007/s11837-006-0233-3.

    Article  Google Scholar 

  3. L. Peroni, M. Scapin, C. Fichera, D. Lehmhus, J. Weise, J. Baumeister, and M. Avalle, Compos. B 66, 430 (2014). https://doi.org/10.1016/j.compositesb.2014.06.001.

    Article  Google Scholar 

  4. F. Chen, Y. Luo, N.G. Tsoutsos, M. Maniatakos, K. Shahin, and N. Gupta, Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201800495.

    Article  Google Scholar 

  5. A.K. Singh, B. Saltonstall, B. Patil, N. Hoffmann, M. Doddamani, and N. Gupta, JOM 70, 310 (2018). https://doi.org/10.1007/s11837-017-2731-x.

    Article  Google Scholar 

  6. F. Chen, G. Mac, and N. Gupta, Mater. Des. 128, 182 (2017). https://doi.org/10.1016/j.matdes.2017.04.078.

    Article  Google Scholar 

  7. A.K. Singh, B. Patil, N. Hoffmann, B. Saltonstall, M. Doddamani, and N. Gupta, JOM 70, 303 (2018). https://doi.org/10.1007/s11837-017-2734-7.

    Article  Google Scholar 

  8. D. Ivaneyko, V. Toshchevikov, and M. Saphiannikova, Polymer 147, 95 (2018). https://doi.org/10.1016/j.polymer.2018.04.057.

    Article  Google Scholar 

  9. Z. Jin, K.P. Pramoda, G. Xu, and S.H. Goh, Chem. Phys. Lett. 337, 43 (2001). https://doi.org/10.1016/S0009-2614(01)00186-5.

    Article  Google Scholar 

  10. L.J. Dooling, M.E. Buck, W.-B. Zhang, and D.A. Tirrell, Adv. Mater. 28, 4651 (2016). https://doi.org/10.1002/adma.201506216.

    Article  Google Scholar 

  11. I. Ivaneiko, V. Toshchevikov, K.W. Stöckelhuber, M. Saphiannikova, and G. Heinrich, Polymer 127, 129 (2017). https://doi.org/10.1016/j.polymer.2017.08.051.

    Article  Google Scholar 

  12. K.P. Sharma, R. Harniman, T. Farrugia, W.H. Briscoe, A.W. Perriman, and S. Mann, Adv. Mater. 28, 1597 (2016). https://doi.org/10.1002/adma.201504740.

    Article  Google Scholar 

  13. P.A. Romero, S.F. Zheng, and A.M. Cuitiño, J. Mech. Phys. Solids 56, 1916 (2008). https://doi.org/10.1016/j.jmps.2007.11.007.

    Article  MathSciNet  Google Scholar 

  14. D.D. Luong, D. Pinisetty, and N. Gupta, Compos. B 44, 403 (2013). https://doi.org/10.1016/j.compositesb.2012.04.060.

    Article  Google Scholar 

  15. J.D. Ferry, Dependence of Viscoelastic Behavior on Temperature and Pressure (New York: Wiley, 1980), p. 225.

    Google Scholar 

  16. S.E. Zeltmann, B.R. Bharath Kumar, M. Doddamani, and N. Gupta, Polymer 101, 1 (2016). https://doi.org/10.1016/j.polymer.2016.08.053.

    Article  Google Scholar 

  17. S.E. Zeltmann, K.A. Prakash, M. Doddamani, and N. Gupta, Compos. B 120, 27 (2017). https://doi.org/10.1016/j.compositesb.2017.03.062.

    Article  Google Scholar 

  18. C. Koomson, S.E. Zeltmann, and N. Gupta, Adv. Compos. Hybrid. Mater. 1, 341 (2018). https://doi.org/10.1007/s42114-018-0026-5.

    Article  Google Scholar 

  19. X. Xu and N. Gupta, Polymer 157, 166 (2018). https://doi.org/10.1016/j.polymer.2018.10.036.

    Article  Google Scholar 

  20. X. Xu and N. Gupta, Materialia 4, 221 (2018). https://doi.org/10.1016/j.mtla.2018.09.034.

    Article  Google Scholar 

  21. X. Xu, C. Koomson, M. Doddamani, R.K. Behera, and N. Gupta, Compos. B 159, 346 (2019). https://doi.org/10.1016/j.compositesb.2018.10.015.

    Article  Google Scholar 

  22. X. Xu and N. Gupta, Adv. Theory Simul. (2019). https://doi.org/10.1002/adts.201800131.

    Article  Google Scholar 

  23. E. Vatankhah, D. Semnani, M.P. Prabhakaran, M. Tadayon, S. Razavi, and S. Ramakrishna, Acta Biomater. 10, 709 (2014). https://doi.org/10.1016/j.actbio.2013.09.015.

    Article  Google Scholar 

  24. L.F. Cupertino, O.P.V. Neto, M.A.C. Pacheco, M.B.R. Vellasco, and J.R.M. d’Almeida, Modeling the young modulus of nanocomposites: a neural network approach. in The 2011 International Joint Conference on Neural Networks, San Jose, California, USA (2011). https://doi.org/10.1109/ijcnn.2011.6033415.

  25. Z. Sun, E. Ambrosi, A. Bricalli, and D. Ielmini, Adv. Mater. 30, 1802554 (2018). https://doi.org/10.1002/adma.201802554.

    Article  Google Scholar 

  26. P. Jarosz, J. Kusiak, S. Małecki, P. Morkisz, P. Oprocha, W. Pietrucha, and Ł. Sztangret, JOM 68, 1535 (2016). https://doi.org/10.1007/s11837-016-1916-z.

    Article  Google Scholar 

  27. G. Zhao, J. Yang, J. Chen, G. Zhu, Z. Jiang, X. Liu, G. Niu, Z.L. Wang, and B. Zhang, Adv. Mater. Technol. 4, 1800167 (2019). https://doi.org/10.1002/admt.201800167.

    Article  Google Scholar 

  28. O. Sporns, Adv. Mater. 5, 488 (1993). https://doi.org/10.1002/adma.19930050624.

    Article  Google Scholar 

  29. H. Li, Z. Hu, W. Hu, and L. Hua, JOM 10, 10 (2019). https://doi.org/10.1007/s11837-018-03326-2.

    Article  Google Scholar 

  30. D.J. Armaghani, E. Tonnizam Mohamad, E. Momeni, M. Monjezi, and M. Sundaram Narayanasamy, Arab. J. Geosci. 9, 48 (2015). https://doi.org/10.1007/s12517-015-2057-3.

    Article  Google Scholar 

  31. RS Anupama Upadhyay, OALib J. 1, 1 (2014). https://doi.org/10.4236/oalib.1100903.

    Article  Google Scholar 

  32. R.B. Heslehurst, Compos. Struct. 35, 369 (1996). https://doi.org/10.1016/S0263-8223(96)00042-6.

    Article  Google Scholar 

  33. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Cambridge, MA: MIT Press, 2016).

    MATH  Google Scholar 

  34. O.A. Mohamed, S.H. Masood, and J.L. Bhowmik, Measurement 107, 128 (2017). https://doi.org/10.1016/j.measurement.2017.05.019.

    Article  Google Scholar 

  35. J. Kennedy and R. Eberhart, Particle swarm optimization. in Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia, 1995. https://doi.org/10.1109/icnn.1995.488968.

  36. M. Clerc and J. Kennedy, IEEE Trans. Evolut. Comput. 6, 58 (2002). https://doi.org/10.1109/4235.985692.

    Article  Google Scholar 

  37. I.C. Trelea, Inf. Process. Lett 85, 317 (2003). https://doi.org/10.1016/S0020-0190(02)00447-7.

    Article  MathSciNet  Google Scholar 

  38. P.J. Angeline, Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences (Berlin: Springer, 1998).

    Google Scholar 

  39. Z. Jia, T. Li, F.-P. Chiang, and L. Wang, Compos. Sci. Technol. 154, 53 (2018). https://doi.org/10.1016/j.compscitech.2017.11.015.

    Article  Google Scholar 

  40. R.T.H. Zafer Gürdal and Prabhat Hajela, Design and Optimization of Laminated Composite Materials (New York: Wiley, 1999).

    Google Scholar 

  41. H. Markovitz, J. Colloid Interface Sci. 98, 292 (1984). https://doi.org/10.1016/0021-9797(84)90514-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbo Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Gupta, N. Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates. JOM 71, 4015–4023 (2019). https://doi.org/10.1007/s11837-019-03666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03666-7

Navigation