Skip to main content
Log in

Hot Deformation Behavior and Workability of As-Cast Dilute Mg-1.2Zn-0.2Y Alloy

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Flow stress behavior of as-cast dilute Mg-1.2Zn-0.2Y alloy was studied via uniaxial compression test at temperature (300–450°C) and strain rate (0.001–1 s−1) using a Gleeble-3500 thermal simulation tester. The constitutive equation with the deformation activation energy of 275.9 kJ/mol was established to describe the thermal deformation behavior of the tested material. The processing maps for the Mg alloy were also constructed based on dynamic material modeling. Optical microscopy, x-ray diffraction, transmission electron microscopy and electron backscatter diffraction were utilized to characterize the microstructures formed at elevated temperature. The results indicated that dynamic recovery was the dominant work-softening mechanism of the Mg-1.2Zn-0.2Y alloy at lower temperature and dynamic recrystallization mainly contributed to the deformation softening at higher temperature. The optimal processing parameters of the safe deformation window were identified as temperature of 420–450°C and strain rate of 0.001–0.01 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Yang, J. Li, J. Zhang, and G.W. Lorimer, Acta Metall. 21, 313 (2008).

    Article  Google Scholar 

  2. N. Mo, Q. Tan, and M. Bermingham, Mater. Des. 155, 422 (2018).

    Article  Google Scholar 

  3. S. Tekumalla, S. Seetharaman, A. Almajid, and M. Gupta, Metals 5, 1 (2015).

    Article  Google Scholar 

  4. H. Yua, H. Yan, J. Chen, B. Su, Y. Zheng, Y. Shen, and Z. Ma, J. Alloys Compd. 586, 757 (2014).

    Article  Google Scholar 

  5. M. Roostaei, M.H. Parsa, R. Mahmudi, and H. Mirzadeh, J. Alloys Compd. 631, 1 (2015).

    Article  Google Scholar 

  6. B. Pourbahari, H. Mirzadeh, and M. Emamy, J. Mater. Eng. Perform. 27, 1327 (2018).

    Article  Google Scholar 

  7. B. Pourbahari, H. Mirzadeh, and M. Emamy, Mater. Sci. Eng., A 680, 39 (2017).

    Article  Google Scholar 

  8. Y. Zhang, X. Zeng, L. Liu, L. Chen, H. Zhou, Q. Li, and Y. Zhu, Mater. Sci. Eng., A 373, 320 (2004).

    Article  Google Scholar 

  9. M. Socjusz-Podosek and L. Lity nska, Mater. Chem. Phys. 80, 472 (2003).

    Article  Google Scholar 

  10. D. Xu, W. Tang, L. Liu, Y. Xu, and E. Han, J. Alloys Compd. 432, 129 (2007).

    Article  Google Scholar 

  11. J.Y. Lee, H.K. Lim, D.H. Kim, and W.T. Kim, Mater. Sci. Eng., A 491, 349 (2008).

    Article  Google Scholar 

  12. Z. Zhang, X. Liu, W. Hu, J. Li, Q. Le, L. Bao, Z. Zhu, and J. Cui, J. Alloys Compd. 624, 116 (2015).

    Article  Google Scholar 

  13. A. Müller, G. Garcés, P. Pérez, and P. Adeva, J. Alloys Compd. 443, L1 (2007).

    Article  Google Scholar 

  14. D.H. Bae, M.H. Lee, and K.T. Kim, J. Alloys Compd. 342, 445 (2002).

    Article  Google Scholar 

  15. D.H. Bae, S.H. Kim, and D.H. Kim, Acta Mater. 50, 2343 (2002).

    Article  Google Scholar 

  16. M. Jiang, C. Xu, T. Nakata, H. Yan, R. Chen, and S. Kamado, Mater. Sci. Eng., A 678, 329 (2016).

    Article  Google Scholar 

  17. M. Jiang, C. Xu, and T. Nakata, J. Alloys Compd. 668, 13 (2016).

    Article  Google Scholar 

  18. H. Mirzadeh, Mech. Mater. 77, 80 (2014).

    Article  Google Scholar 

  19. M. Karami and R. Mahmudi, Mater. Lett. 81, 235 (2012).

    Article  Google Scholar 

  20. H. Mirzadeh and A. Najafizadeh, Mater. Des. 31, 1174 (2010).

    Article  Google Scholar 

  21. J. Yu, Z. Zhang, Q. Wang, X. Yin, J. Cui, and H. Qi, J. Alloys Compd. 704, 382 (2017).

    Article  Google Scholar 

  22. Z. Zhang, X. Yang, Z. Xiao, J. Wang, D. Zhang, C. Liu, and T. Sakai, Mater. Des. 97, 25 (2016).

    Article  Google Scholar 

  23. B. Lva, J. Peng, Y. Wang, X. An, L. Zhong, A. Tang, and F. Pan, Mater. Des. 53, 357 (2014).

    Article  Google Scholar 

  24. X. Xia, Q. Chen, S. Huang, J. Lin, C. Hu, and Z. Zhao, J. Alloys Compd. 644, 308 (2015).

    Article  Google Scholar 

  25. Q. Chen, X. Xia, B. Yuan, D. Shu, Z. Zhao, and J. Han, Mater. Sci. Eng., A 593, 38 (2014).

    Article  Google Scholar 

  26. Y.V.R.K. Prasad and K.P. Rao, Mater. Sci. Eng., A 487, 316 (2008).

    Article  Google Scholar 

  27. S. Aliakbari Sani, G.R. Ebrahimi, and A.R. Kiani Rashid, J. Alloys Compd. 4, 104 (2016).

    Article  Google Scholar 

  28. G. Quan, T. Ku, and W. Song, Mater. Des. 32, 2462 (2011).

    Article  Google Scholar 

  29. J. Li, J. Liu, and Z. Cui, Mater. Des. 56, 889 (2014).

    Article  Google Scholar 

  30. C.M. Sellars and W.J. McTegart, Acta Metall. 14, 1136 (1966).

    Article  Google Scholar 

  31. H. McQueen and N. Ryan, Mater. Sci. Eng., A 322, 43 (2002).

    Article  Google Scholar 

  32. M.A. Jabbari Taleghani, E.M. Ruiz Navas, M. Salehi, and J.M. Torralba, Mater. Sci. Eng., A 534, 624 (2012).

    Article  Google Scholar 

  33. D. Ponge and G. Gottstein, Acta Mater. 46, 69 (1998).

    Article  Google Scholar 

  34. M. Chaman-ara, G.R. Ebrahimi, and H.R. Ezatpour, Trans. Nonferrous Metals Soc. China 28, 629 (2018).

    Article  Google Scholar 

  35. T.Y. Kwak, H.K. Lim, and W.J. Kim, J. Alloys Compd. 644, 645 (2015).

    Article  Google Scholar 

  36. H. Mirzadeh, Mater. Chem. Phys. 152, 123 (2015).

    Article  Google Scholar 

  37. H. Mirzadeh, J. Mater. Res. 5, 1 (2016).

    Google Scholar 

  38. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Pergamon: Elsevier, 2004), pp. 219–224.

    Google Scholar 

  39. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, and K.A. Lark, Metall. Trans. A 15, 1883 (1984).

    Article  Google Scholar 

  40. O. Sivakesavam and Y.V.R.K. Prasad, Mater. Sci. Eng., A 362, 118 (2003).

    Article  Google Scholar 

  41. X. Xia, Q. Chen, and K. Zhang, Mater. Sci. Eng., A 587, 283 (2013).

    Article  Google Scholar 

  42. Y.V.R.K. Prasad, Indian J. Technol. 28, 435 (1990).

    Google Scholar 

  43. Z. Zhang, H. Zhou, and X. Liu, Mater. Sci. Eng., A 565, 213 (2013).

    Article  Google Scholar 

  44. S.G. Hong, S.H. Park, and C.S. Lee, Scr. Mater. 64, 145 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51574118, 51774124, 51574095) and Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province, China (Grant No. 2016GK4056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teng Jie or Chen Chaoyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhiming, X., Xinrong, C., Bin, Y. et al. Hot Deformation Behavior and Workability of As-Cast Dilute Mg-1.2Zn-0.2Y Alloy. JOM 71, 4125–4135 (2019). https://doi.org/10.1007/s11837-019-03659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03659-6

Navigation