Skip to main content
Log in

Effect of Powder Size on Fatigue Properties of Ti-6Al-4V Powder Compact Using Hot Isostatic Pressing

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ti-6Al-4V powder compacts were prepared using hot isostatic pressing (HIP), and the effect of powder size on microstructure and fatigue properties of HIPed powder compacts was investigated. The results show that the microstructure of powder compacts is fine and homogeneous. The volume fraction of equiaxed α phase in the powder compact decreases with the increase of powder size. The powder compact HIPed from powder with a full size range (5–250 μm) achieves excellent tensile properties and the best fatigue strength compared with the HIPed fine and coarse powders. The relevant mechanisms are discussed based on the powder surface quality and as-HIPed microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996).

    Article  Google Scholar 

  2. D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).

    Article  Google Scholar 

  3. Y.W. Kim and S.L. Kim, JOM 70, 553 (2018).

    Article  Google Scholar 

  4. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev. 63, 407 (2018).

    Article  Google Scholar 

  5. W. Xu, X. Jin, K. Huang, Y. Zong, S. Wu, X. Zhong, F. Kong, D. Shan, and S. Nutt, Mater. Sci. Eng. A 705, 200 (2017).

    Article  Google Scholar 

  6. X. Feng, J. Qiu, Y. Ma, J. Lei, Y. Cui, X. Wu, and R. Yang, J. Mater. Sci. Technol. 32, 362 (2016).

    Article  Google Scholar 

  7. L. Xu, R. Guo, C. Bai, J. Lei, and R. Yang, J. Mater. Sci. Technol. 30, 1289 (2014).

    Article  Google Scholar 

  8. F. Yang and B. Gabbitas, J. Alloys Compd. 695, 1455 (2017).

    Article  Google Scholar 

  9. A.K. Sachdev, K. Kulkarni, Z.Z. Fang, R. Yang, and V. Girshov, JOM 64, 553 (2012).

    Article  Google Scholar 

  10. R. Baccino, F. Moret, F. Pellerin, D. Guichard, and G. Raisson, Mater. Des. 21, 345 (2000).

    Article  Google Scholar 

  11. F.H. Froes and S.J. Mashl, JOM 56, 46 (2004).

    Article  Google Scholar 

  12. L. Xu, R.P. Guo, J. Wu, Z.G. Lu, and R. Yang, Acta Metall. Sin. 54, 1537 (2018).

    Google Scholar 

  13. C. Cai, B. Song, P. Xue, Q. Wei, C. Yan, and Y. Shi, Mater. Des. 106, 371 (2016).

    Article  Google Scholar 

  14. R. Guo, L. Xu, J. Wu, R. Yang, and B.Y. Zong, Mater. Sci. Eng. A 639, 327 (2015).

    Article  Google Scholar 

  15. K. Zhang, J. Mei, N. Wain, and X. Wu, Metall. Mater. Trans. A 41, 1033 (2010).

    Article  Google Scholar 

  16. W.X. Yuan, J. Mei, V. Samarov, D. Seliverstov, and X. Wu, J. Mater. Process. Technol. 182, 39 (2007).

    Article  Google Scholar 

  17. J. Wu, R. Guo, L. Xu, Z.G. Lu, Y.Y. Cui, and R. Yang, J. Mater. Sci. Technol. 33, 172 (2017).

    Article  Google Scholar 

  18. C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Mater. Sci. Eng. A 564, 176 (2013).

    Article  Google Scholar 

  19. C. Cai, B. Song, P. Xue, Q. Wei, J. Wu, W. Li, and Y. Shi, J. Alloys Compd. 686, 55 (2016).

    Article  Google Scholar 

  20. R. Guo, L. Xu, Z. Chen, Q. Wang, B.Y. Zong, and R. Yang, Mater. Sci. Eng. A 706, 57 (2017).

    Article  Google Scholar 

  21. E. Arzt, M.F. Ashby, and K.E. Easterling, Metall. Trans. A 14, 211 (1983).

    Article  Google Scholar 

  22. R. Guo, L. Xu, B.Y. Zong, and R. Yang, Acta Metall. Sin. (Engl. Lett.) 30, 735 (2017).

    Article  Google Scholar 

  23. R.P. Guo, L. Xu, B. Zong, and R. Yang, Mater. Des. 99, 341 (2016).

    Article  Google Scholar 

  24. D. Eylon, J. Mater. Sci. 14, 1914 (1979).

    Article  Google Scholar 

  25. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Weinheim: Wiley-VCH, 2003), pp. 16–23.

    Book  Google Scholar 

  26. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian, Powder Metall. 57, 251 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 51801132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruipeng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Yu, B., Shi, X. et al. Effect of Powder Size on Fatigue Properties of Ti-6Al-4V Powder Compact Using Hot Isostatic Pressing. JOM 71, 3614–3620 (2019). https://doi.org/10.1007/s11837-019-03612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03612-7

Navigation